The Room Acoustics of Large Spaces

Presented by:

Rick Talaske
The Talaske Group, inc.
Oak Park, IL – U.S.A.

ASA Tutorial
Cancun, Mexico

The photos of all projects are designed by The Talaske Group, inc.
It is my pleasure to present this discussion in Cancun regarding the acoustics of large rooms. Generally, this topic is what the public thinks of when they hear the word “acoustics”. This is because of their experiences in churches, theatres and music halls. I hope to better your understanding about this interesting topic.

Es un placer de estar aquí en Cancun y al al vez hacer un presentación sobre la acustica en grandes espacios. Generalmente, la gente cada vez que se menciona la palabra “acustica”, la relacionan con iglesias, teatros y salas musicales. Espero de que en esta presentacion, ustedes se lleven un mejor entendimiento del concepto de acustica.
Acoustically speaking: What is a “Large” Room

In this paper, a large room:

- Schroeder’s Frequency is less than 50 Hz
- \(f_c = 2000 \times SR \left(\frac{T_{60}}{V} \right) \)
- \(f_c \) is below the voice and music bandwidth.
- Comb filtering is a lesser consideration.

- \textit{Un espacio grande es un cuarto con muchas resonancias normales. Hay tantas resonancias que finalmente no son tan importantes. Con espacios grandes, tenemos que pensar en “dominio del tiempo”}.
Large Rooms Include:

- Greater than 300 m3
- Large Studios
- Rehearsal Rooms

Espacios grandes incluyen:

- Espacios 300 m3 y mas grande
- Studios grandes
- Salas de ensayo
- Iglesias
- Salas de Musica
- Teatros
- Coliseos (no vamos a discutir coliseos)
Large Rooms Include:

- Greater than 300 m³
- Large Studios
- Rehearsal Rooms
- Worship Spaces
Large Rooms Include:

- Greater than 300 m3
- Large Studios
- Rehearsal Rooms
- Worship Spaces
- **Recital and Concert Halls**
Large Rooms Include:

- Greater than 300 m3
- Large Studios
- Rehearsal Rooms
- Worship Spaces
- Recital and Concert Halls
- Theatres
- (not Arenas, in this discussion)
Goal: Quality experience for the listeners.

Clarity

(articulation, intelligibility, definition)

The quality of sound which supports the comprehension of detail and the distinct separation of individual musical notes and articulations.

Claridad nos provee el detalle de la musica o del orador.
Goal: Quality experience for the listeners.

Loudness
(volume, strength)

The overall quantity of sound, as heard by a listener.

Ruido es necesario para escuchar el sonido con suficiente fuerza.

- Clarity
- Loudness
Goal: Quality experience for the listeners.

The ability to determine the exact or approximate location of the sound source.

- Clarity
- Loudness
- Localization

La abilidad para localizar el origen del sonido depende en la claridad y el sonido.
Goal: Quality experience for the listeners.

- Clarity
- Loudness
- Localization
- Reverberance
Goal: Quality experience for the listeners.

Liveliness
(running liveliness)

The perception of reverberance is heard in two forms:

• The sense of a persistence of sound as heard during ongoing speech or music.

• Clarity
• Loudness
• Localization
• Reverberance
 – Running Liveliness
Goal: Quality experience for the listeners.

Reverberation

(decay, lingering)

The perceived lingering of sound following the cessation of music.

Reverbacion es escuchado en dos formas:
• Escuchando musica y oratoria,
• Al momento que la musica y oratoria se desvanese

• Clarity
• Loudness
• Localization
• Reverberance
 – Running Liveliness
 – Reverberation
Goal: Quality experience for the listeners.

Envelopment

(immersion)

The sense of being surrounded by sound.

Envoltura es el sentido de estar envuelto por sonido.
Goal: Quality experience for the listeners.

Warmth

(bass response)

The tonal quality resulting from an abundance of low-pitched sound (bass sound) within a room.

El timbre del sonido se relaciona con la cantidad del tono bajo, medio y tono alto del sonido.

- **Envelopment**
- **Proper timbre**
 - **Warmth**
 - Or, lack of “boominess”
 - **Proper mid/high pitch**
Goal: Quality experience for the users.

- Communication
 - Musicians on Stage
 - Musicians in Pit
- Feedback
Goal: Quality experience for the users.

- Communication
 - Musicians on Stage
 - Musicians in pit
- Feedback
- Freedom from abnormalities
The Talaske Group, inc.

Source PATH Receiver

- Size
Source PATH Receiver

- Size
- Shape
Source PATH Receiver

- Size
- Shape
El tamaño, forma y materiales determinan casi totalmente las características acústicas del espacio.

Source PATH Receiver

- Size
- Shape
- Materials
Source PATH Receiver

- Size
- Shape
- Materials
- Also
 - Background noise
Source **PATH** Receiver

- Size
- Shape
- Materials
- Also
 - Background noise
 - Sound absorption in air
First: Need to think in the *Time* Domain

- The direct sound offers Clarity, Loudness and establishes position.
- Very Early Reflections (0 to 10 msec) create comb filtering.
- First Early Reflections (10 to 40 msec) promote Clarity, Loudness and aid localization.

Con espacios grandes, necesitamos pensar en el “dominio del tiempo”.
First: Need to think in the *Time* Domain

- Additional Early Reflections (10 to 80 msec) promote Clarity and Loudness.
- Later sound reflections (40 to 250 msec) promote Running Liveliness and Envelopment.
First: Need to think in the *Time* Domain

- Mid time period (250 to 750 msec) is masked.
- Reverberant sound (750 to 1000, 2000 or more msec)

La abundancia de reflectiones de sonido entre 40 a 250 milisegundos determinan la percepcion o resonancia mas que la reverbacion del tiempo en el espacio o sala.
Achieving Clarity Loudness and Proper Localization

Clarity

- Strong direct sound to listeners
- Quickly-arriving sound reflections
- Size, shape, and materials
- Absence of noise
Achieving Clarity Loudness and Proper Localization

Loudness

- Early and mid-arriving sound reflections from sidewalls (0.01 to 0.25 seconds)
- Room shape that supports multiple lateral sound reflections
- Near-parallel side walls w/balconies support loudness
Achieving/Controlling Running Liveliness

- Running Liveliness influences the perception of reverberance more than Reverberation Time.
- True, especially during ongoing music or speech
Achieving/Controlling Running Liveliness

- Running Liveliness influences the perception of reverberance more than Reverberation Time.
- True, especially during ongoing music or speech.
- True, even during the audible decay of reverberation.
Achieving/Controlling Running Liveliness

- Running Liveliness influences the perception of reverberance more than Reverberation Time.
- True, especially during ongoing music or speech.
- True, even during the audible decay of reverberation.
- Hence, controlling running liveliness is more important than controlling reverberation time.
Creating Envelopment

- Sound reflections from side walls.
- Sound reflections from rear walls.
- Proper rake/arrangement of audience seating areas.
- Begins with proper theatre planning (not “applied” acoustics).
Creating proper *timbre*

- **LOW PITCH SOUND**
 - Add Warmth by conserving and reflecting low-pitched sound
 - Massive walls
 - Large surface areas
Creating proper *timbre*

- **LOW PITCH SOUND**
 - Add Warmth by conserving and reflecting low-pitched sound
 - Massive walls
 - Large surface areas
 - Control “boominess” by absorbing low-pitched sound
 - Absorption by resistance
Creating proper \textit{timbre}

- \textbf{LOW PITCH SOUND}
 - Remember relationship to (long) wavelength
 - Absorption by reactance
 - Calculate the resonance and Q of reactive sound absorbers. (need \textit{some} resistance)
 - \textit{Materiales de peso liviano en frente de cavidades de aire absorben sonidos de tono bajo.}
Creating proper *timbre*

- **MID/HIGH PITCH SOUND**
 - Porosity of materials
Creating proper *timbre*

- MID/HIGH PITCH SOUND
 - Porosity of materials
 - Flow resistance
 - Thickness
Creating proper *timbre*

- MID/HIGH PITCH SOUND
 - Porosity of materials
 - Flow resistance
 - Thickness
 - Room Volume, relative humidity of air
Other considerations

- Few spaces are “single use”
- Acoustic design begins at the concept stage and is integral to the theatre planning.
- La acustica de una sala o espacio debe de ser desarrollada como una pieza integral en el proceso de planeamiento del teatro. La acustica del espacio no puede ser aplicada a las paredes.
Other considerations

- Few spaces are “single use”
- Acoustic design begins at the concept stage and is integral to the theatre planning.
- **Best achieved with acoustical consultant hired directly by the client**
Other considerations

- Few spaces are “single use”
- Acoustic design begins at the concept stage and is integral to the theatre planning.
- Best achieved with acoustical consultant hired directly by the client
- Need to be mindful of source directivity
- Low noise is imperative

La ausencia de sonido es muy importante.
Other considerations

We must all aspire to the highest level of acoustic design appropriate for a given space.

Todos debemos de aspirar a los mas altos niveles en el diseño de acústicas.
Closing

- Reading List
 - Room Acoustics by Kutruff
 - ASA publications
 - Sabine Centennial Symposium Proceedings

Presented by:

Rick Talaske
The Talaske Group, inc.
Oak Park, IL 60301 USA
(located adjacent to Chicago)