	N-96-01 II-A-309	
HANDBOOK OF NOISE RAY Karl S. Pearsons, et al Bolt Beranek and Newman, Canoga Park, California April 1974	PROPERT	:
		05 :01 57 894 91
Natio U. S.	RIBUTED BY: NICONSTANT nai Technical Information Service DEPARTMENT OF COMMERCE Port Royal Road, Springfield Va. 22151	

ł

.

HANDBOOK OF NOISE RATINGS

by Karl S. Pearsons and Ricarda L. Bennett

Prepared by BOLT BERANEK AND NEWMAN, INC. Canoga Park, Calif. 91303

for Langley Research Center

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Communice Springfund, VA. 72151

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1974

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

1. Report No.	2. Government Acces	tion No.	3. Recipient's Cata	log No.
NASA CR-2376				
4. Title and Subtitie			5. Report Date April 1974	
HANDBOOK OF NOISE RATING	S		6. Performing Orga	nization Code
7. Author(s) Karl S. Pearsons and Ric	arda Bennett		8. Performing Organ 2419	nization Report No.
9. Performing Organization Name and Add	résa		10. Work Unit No.	-04
BOLT BERANEK AND NEWMAN Canoga Park, Calif. 913			11, Contract or Grau	
12. Sponsoring Agency Name and Address			13. Type of Report Contracto	
National Aeronautics and	Space Administration			
Washington, D.C. 20546			14. Sponsoring Agen	cy Code
15. Supplementary Notes	······			
This is the final report	on Task 2.			
The format used in this i of Sound Level, 11. Computer Ratings, IV. Community Respi of the measure, the units used usage, and purpose. On the fo divided into such headings as:	i Loudness and Annoyar onse Ratings. The fi i, the definition of i ilowing pages, the ac BACKGROUND, CALCULA	ice Ratings, II st page for eac the measure, ass	I. Communication I h noise rating cont octated standards, ation on a given no AMPLE, EQUIPMENT AN	nterference ains the title geographical
17. Key Words (Suggested by Author(s))	<u> </u>	16. Distribution State		<u></u>
Noise, subjective respons ratings, acoustics		Unclassified		
9. Security Classif. (of this report) Unclassified	20. Security Classif, lof Unclassified	this page)	21, No. of Pages 332	Cat.23

:

x

٠

.

*For sele by the National Technical Information Service, Springfield, Virginia 22151

•

INTRODUCTION

¥

'n

The Handbook of Noise Ratings has been compiled to provide information in a concise form describing the multitude of noise rating schemes which are in use today. Although most of the information contained herein can be found in other references, it is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.

The format used in this Handbook divides the measures into four chapters: I. Direct Ratings of Sound Level, II. Computed Loudness and Annoyance Ratings, III. Communication Interference Ratings, IV. Community Response Ratings. The first page for each noise rating contains the title of the measure, the units used, the definition of the measure, associated standards, geographical usage, and purpose. On the following pages, the additional information on a given noise rating is divided into such headings as: BACKGROUND, CALCULATION METHOD, EXAMPLE, EQUIPMENT and REFERENCES.

The TITLE for each measure is given in its most complete form; followed in parenthesis by its commonly referred to abbreviations. The UNITS are listed in preferred form followed by alternative forms in brackets. The official measuring unit for direct ratings is the decibel (dB). A shorthand method of identifying the

Preceding page blank

weighting function that is being used to rate the noise level is by attaching an additional letter to the abbreviation "dB". Thus, dB(A) is often used to denote A-weighted sound level.

Reference levels are included when appropriate for the units, The DEFINITION briefly outlines the scope of the measure and the parameters that it takes into consideration. STANDARDS include both existing standards and proposed standards. In some cases, industrial standards have been used when national or international standards do not exist. The GEOGRAPHICAL USAGE is included to indicate where the measure is most commonly used. If a specified country is listed in this section, it does not necessarily mean that the measure is used exclusively in this country; nor does it mean that this measure is the only one of its type used in this country. The PURPOSE describes the reasons for the noise rating's development and its major uses. The BACKGROUND provides some indication of the development of the noise rating as well as a description of the elements of the calculation procedures for those measures utilizing relatively complicated techniques. Under the CALCULATION METHOD, a stepby-step procedure is outlined to enable the user to ideally calculate the noise rating. The EXAMPLE uses numerical information in an effort to simulate a real-life situation. A list of the equipment necessary for collecting the data, for calculating the noise rating, or for direct measurement of the noise rating is included under the heading of EQUIPMENT. Some of the literature used in writing the measure is listed under REFERENCES.

The appendix entitled ADDITIONAL RATINGS contains a few of the less frequently used measures. The ABBREVIATIONS section consists of a simple cross reference index. A GLOSSARY of acoustical terminology is included for completeness.

1v

The authors are sincerely grateful to all the people who helped bring this work to completion. In particular, we are indebted to Drs. William J. Galloway and David C. Nagel who individually made many valuable and constructive comments on an earlier draft of this book. And we owe a special thanks to Richard Horonjeff who gave much needed advice and encouragement.

ø

Į

.

. . . .

Finally, we welcome any comments regarding content, and (if possible) serious omissions. We hope that the Handbook of Noise Ratings will prove to be a useful tool in fostering a better understanding of noise ratings and their implementation.

v

.

Ţ

٠

TABLE OF CONTENTS

Page

INTRODUCTION	111

CHAPTER I - DIRECT RATINGS OF SOUND LEVEL

Overall Sou	ind Pre	essure Lev	vel (SF	PL)	4
A-Weighted	Sound	Pressure	Level	(AL)	10
B-Weighted	Sound	Pressure	Level	(BL)	16 -
C-Weighted	Sound	Pressure	Level	(CL)	20 🖂
D-Weighted	Sound	Pressure	Level	(DL)	24

CHAPTER II - COMPUTED LOUDNESS AND ANNOYANCE RATINGS

Loudness Level - Zwicker (LL ₂)	32 ∿
Loudness Level - Stevens (LL _S)	50~
Perceived Level (PL). Mail. M.	60 <i>~</i>
Perceived Noise Level (PNL)	76 V
Tone Corrected Perceived Noise Level (PNLT)	86
Effective Perceived Noise Level (EPNL)	94
Equivalent Sound Level (L _{eq})	100 🗸
Single Event Noise Exposure Level (SENEL)	104
Hourly Noise Level (HNL)	114

CHAPTER III - COMMUNICATION INTERFERENCE RATINGS

Articulation Index (AI)	124
Speech Interference Level (SIL)	138
Noise Criterion Curves (NC)	144
Preferred Noise Criterion (PNC)	156

Preceding page blank

TABLE OF CONTENTS (CONTINUED)

Pagé

•

CHAPTER IV - COMMUNITY RESPONSE RATINGS

Composite Noise Ratings for Community (CNR _C)	170
Composite Noise Ratings for Aircraft (CNR _A)	184
Community Noise Equivalent Level (CNEL)	198 🗸
Noise Exposure Forecast (NEF)	206 🗸
Weighted Equivalent Continuous Perceived Noise	
Level (WECPNL)	212
Noise Pollution Level (NPL)	218⁄
Day-Night Level (L _{dn}),	224 🗸
Isopsophic Index (N)	230
Mean Annoyance Level (0)	236
Noisiness Index (NI)	244
Total Noise Load (B)	256
Rating Sound Level (L_),	262
Noise Rating Curves (NR)	272
Noise and Number Index (NNI)	286
Traffic Noise Index (TNI)	290

APPENDICES

I.	Additional Ratings	298
II.	Abbreviations	308
III.	Glossary	314
IV.	Noise Ratings Comparisons	324

viii

CHAPTER I

ľ

计规制

DIRECT RATINGS OF SOUND LEVEL

.

- /-

TITLE

SOUND PRESSURE LEVEL (OVERALL SOUND PRESSURE LEVEL) (LINEAR LEVEL) (SPL) (OASPL) (L) (L_n)

UNIT

ł

dB Reference pressure: 20 µN/m²*

DEFINITION

The sound pressure level of a sound is 20 times the logarithm to the base 10 of the ratio of the measured root-mean-square (RMS) value of the sound pressure to a reference sound pressure*.

$$SPL = 20 \log_{10} (p_{meas} / p_{ref})$$
[1]

*The reference sound pressure for this Handbook is 20 μ N/m², but often seen is the reference pressure 20 μ Pascal (Pa). Also commonly used is .0002 microbar. The relationship is that .0002 microbar is equal to .0002 dyne/cm² is equal to 20 μ N/m².

STANDARDS

Overall sound pressure level is not standardized. Related Standards are:

- American National Standards Institute Specification for Sound Level Meters (S1.4-1971)
- IEC Recommendation, Publication 179.
 Precision Sound Level Meters, 1965
- 3) IEC Recommendation, Publication 123. Recommendation for Sound Level Meter, 1961
- IEC Recommendation, Publication 225.
 Octave, half-octave, and third-octave band filters intended for the analysis of Sounds and Vibration, 1966

3

GEOGRAPHICAL USAGE International

PURPOSE

¥

٠.

Overall sound pressure level is a simple physical measure of sound which gives equal weight to all frequencies. It measures the environmental noise level but gives little information as to the human perception of the noise. It is primarily used by engineers who need a measure which relates to total noise energy.

BACKGROUND

Overall sound pressure level was used as one of the first attempts at measuring the magnitude of noise. Earlier equipment limitations only allowed a narrow frequency band analysis of the sound pressure level of a noise. Today, though no standard exists for the bandwidth of overall sound pressure level, it is generally considered to extend from 20 to 20,000 Hz, a range which corresponds to human hearing. The more recent sound level meter (SLM) equipment encompasses a range 'from 10 Hz to 40,000 Hz.

Sound pressure levels may also be expressed in terms of *fast* or *slow* response. These terms refer to the speed with which the SLM indicator follows fluctuating sound. The averaging times are 0.3 seconds and 1.5 seconds respectively. For more detailed information

Preceding page blank

on the meaning of the *fast* and *slow* response, refer to one of the above listed standards for sound level meters.

determined using a sound level meter, or it can be calculated from octave or onethird octave frequency band sound levels. The procedure is to sum the band levels on the basis of their squared pressures, (often referred to as summation on an

Overall sound pressure level can be

energy basis).

CALCULATION METHOD

EXAMPLE

An example of OASPL noise calculations for one-third octave band measurements of an aircraft flyover noise spectrum is shown in Table OASPL-I. In order to combine decibels, the band levels are first converted to relative pressure squared by dividing by ten and taking the antilog of the result.

Relative Pressure Squared = [2] antilog₁₀ (level/10)

The relative pressure squared is then summed and converted back to decibels.

For this example, OASPL = 102.3 dB.

.6

TABLE OASPL-I

EXAMPLE OF OVERALL SOUND PRESSURE LEVEL CALCULATION FROM ONE-THIRD OCTAVE BAND MEASUREMENTS OF AIRCRAFT FLYOVER

One-Third Octave Band Center Frequency Hz	Band Level dB	Relative Pressure Squared
50	74.0	2.51 X 10 ⁷
63*	76,0	3.98 " "
80	73.0	1.99 " "
100	66.0	0.39 " "
125*	77.0	5.01 " "
160	80.0	
		10,00
200	85.0	1 21.02
250*	83.0	10.00
315	76.0	2.50
400	79.0	/ . 24
500*	79.0	/ . 74
630	80.0	10.00
800	80.0	L TO*00
1000*	82.0	15.84 " "
1250	83.0	19.95 " "
1600	84.0	25.11 " "
2000*	89.0	79.43 " "
2500	101.0	1258.92 " "
3150	90.0	100.00 " "
4000*	84.0	25.11 " "
5000	87.0	50.11 " "
6300	77,0	5.01 " "
8000*	74.0	2.51 " "
10000	61.0	0.12 " "

*Octave Band

7

TOTAL 1697.505 X 10^7 OASPL = 10 log (1697.505 X 10^7) = 102.3 dB

L

Þ

đ

۰.

ω

EQUIPMENT

•

REFERENCES

 $\left\{ \cdot \right\}$

٠

 r_i^{\pm}

- A sound level meter or equivalent equipment adhering to the above mentioned standards (ANSI, IEC)
- Or, Equipment for determining octave band or one-third octave band noise measurements.
- Beranek, Leo, <u>Acoustic Measurement</u>, John Wiley & Sons, 1949.

9

 Harris, Cyril, <u>Handbook of Noise</u> <u>Control</u>, McGraw Hill Co., 1957, New York.

TITLE

 Λ -LEVEL (SOUND LEVEL-A) (AL) (L_A)

UNIT

dB(A)* (dBA) (dB) Keference pressure: 20 µM/m²

DEFINITION

A-weighted sound pressure level or A-level is sound pressure level which has been filtered or weighted to quantitatively reduce the effect of the low frequency noise. It was designed to approximate the response of the human

ear to sound. A-level is measured in decibels with a standard sound level meter which contains the weighting network for "A" shown in Figure AL-1.

Figure AL-1 A-Weighting

STANDARDS

- American National Standards Institute Specification for Sound Level Meters (S1.4-1971).
- IEC Recommendation, Publication 179, Precision Sound Level Meters, 1965.
- IEC Recommendation, Publication 123. Recommendation for Sound Level Meters, 1961.

*The official unit for all the weighted sound levels is dB, however it is often seen in literature as dB(A), dB(B) etc.

 IEC Recommendation, Publication 225.
 Octave, Half-Octave, and Third-Octave Band Filters Intended for the Analysis of Sounds and Vibration, 1966.

GEOGRAPHICAL USAGE International

PURPOSE

BACKGROUND

7

A-level provides a simple measure that is found to correlate better than overall or C-level with people's subjective assessment of the loudness or noisiness of many types of sound. A-level is presently used as single number rating for industrial noise, aircraft flyovers and traffic noise levels.

Because overall sound pressure level did not correlate well with human assessment of the loudness of sounds, weighting networks were added to sound level meters to attenuate low frequency noise in accordance with equal loudness contours. One of these weighting networks was designated "A" and was originally employed for sounds less than 55 dB in level. Now A-level is used for all levels.

The A-weighting is realized by a simple electrical network which provides the weighting shown in Figure AL-1. A-level has been found to correlate well with people's subjective judgment of the annoyance of many types of noise. Its simplicity and superiority over unweighted SPL in predicting people's responses to noise has made it a widely used measure.

CALCULATION METHOD

A-level can be determined using a sound level meter that contains an electrical network for A-weighting. A-level also may be estimated by applying A-weighting values (Table AL-I, Figure AL-1) to octave or one-third octave frequency band measures and summing the bands on the basis of their squared pressures (often referred to as summation on an *energy* basis).

١.

TABLE AL-I

One-Third Octave and One-Third Octave and One-Third Octave Band Octave Band One-Third Center Octave Band Center Octave Band Frequency Corrections Frequency Corrections llz dB Η̈́z dB 50 -30.2 1000 0.0* 63 -26.2* 1250 0.6 -22.5 80 1600 1.0 100 -19.1 2000 1.2* -16.1* 125 2500 1.3 160 -13.4 3150 1.2 200 -10.9 4000 1.0* 250 - 8.6* 5000 0.5 - 6.6 315 6300 -0.1 400 - 4.8 8000 -1.1* 500 - 3.2* 10000 -2.5 630 - 1.9 12500 -4.3 800 - 0.8

A-WEIGHTING CORRECTION FUNCTIONS

*Octave Band Corrections

EXAMPLE

An example of A-level calculation for onethird octave band measurements of an aircraft flyover noise is shown in Table AL-II. The noise spectrum is first corrected by the A-weighting response functions given in Table AL-I.

12

. .

In order to combine decibels, the corrected band levels are first converted to relative pressure squared by dividing by ten and taking the antilog of the result.

Relative Pressure Squared = antilog₁₀ (corrected level/10) [1]

The relative pressure squared is then summed and converted back to corresponding decibels.

 $\begin{array}{l} 25\\ \text{A-level} = 10 \log_{10} \sum_{i=1}^{\sum} \text{ Relative Pressure [2]}\\ \text{Squared} \end{array}$

For this example, A-level = 103.3 dB(A).

EQUIPMENT

٠.

 A sound level meter or equivalent equipment adhering to the above mentioned standards (ANSI, IEC).

 OR, Equipment for determining octave band or one-third octave band noise measurements.

REFERENCES

 Schultz, Theodore J., "Technical Background for Noise Abatement in HUD's Operating Programs", for U. S. Department of Housing and Urban Development, BBN Report No. 2005, (September 1970).

- U. S. Environmental Protection Agency, "Fundamentals of Noise: Measurement, Rating Schemes, and Standards", (Dec., 1971), NTID300.15.
- 3) Young, R. W., "Don't Forget the Simple Sound Level Meter", NOISE CONTROL 4: 42-43 (1958).

ł

TA	BLE	AL-I	I

EXAMPLE OF A-LEVEL CALCULATION FROM ONE-THIRD OCTAVE BAND MEASUREMENTS OF AIRCRAFT FLYOVER

One-Third Octave Bar Center Frequency Hz	nd Band Level dB	Correction for A-Weighting {from Table AL-I}	Corrected Level dB	Relative Pressure Squared
50	74.0	-30.2	43,8	.023 X 10 ⁶
63	76.0	-26.2	49.8	.095 " "
80	73.0	-22.5	50.5	.112 " "
100	66.0	-19.1	46.9	.049 " "
125	77.0	-16.1	60.9	1.23 " "
160	80.0	-13.4	66.6	4.57 " "
200	85.0	-10.9	74.1	25.70 " "
250	83.0	- 8.6	74.4	27,54 " "
315	76.0	- 6,6	69.4	R.70 " "
400	79.0	- 4.8	74.2	26,30 " "
500	79.0	- 3.2	75.8	38.01 " "
630	80.0	- 1.9	78.1	64,56 " "
800	80.0	- 0.8	79.2	83.18 " "
1000	82.0	0.0	82.0	158,49 " "
1250	83.0	0.6	83.6	229.08 " "
1600	84.0	1.0	85.0	316.22 " "
2000	89.0	1.2	90.2	1047.12 " "
2500	101.0	1.3	102.3	16982.44 " "
3150	90.0	1.2	91.2	1318.25 " "
4000	84.0	1.0	85.0	316,22 " "
5000	87.0	0.5	87.5	562.34 " "
6300	77.0	- 0.1	76.9	48,97 " "
8000	74.0	- 1.1	72.9	19.49 " "
10000	61.0	- 2,5	58.5	0.708 " "

. .

TOTAL 21279.19 x 10⁶

۲.

N

 $AL = 10 \log (21279.39 \times 10^6) = 103.3 dB(A)$

يتعمه فيصبرني المراجع الراج

.

and the second second

•

NOTES

TITLE	B-LEVEL (BL) (L _B)
UNIT	dB(B) (dB) Reference Pressure: 20 µN/m ²
DEFINITION	B-weighted sound pressure level or B-level is sound pressure level which has been filtered or weighted to quantitatively reduce the effect of the low frequency noise. B-level is measured in decibels with a stan- dard sound level meter which contains the weighting network for "B" -20 shown in Figure BL-1. Figure BL-1 B-Weighting
STANDARDS	 American National Standards Institute Specification for Sound Level Meters (S1.4-1971) IEC Recommendation, Publication 179. Precision Sound Level Meters, 1965 IEC Recommendation, Publication 123. Recommendation for Sound Level Meters, 1961 IEC Recommendation, Publication 225. Octave, Half Octave, and Third-Octave Band Filters Intended for the Analysis of Sounds and Vibration, 1966
GEOGRAPHICAL USAGE	International

PURPOSE

B-level was originally intended to be a measure that would correlate with the loudness of sounds which ranged between 55 and 85 decibels. Currently B-level is not widely used.

BACKGROUND

Because overall sound pressure level did not correlate well with human assessment of the loudness of sounds, weighting networks were designed into sound level meters to attenuate low frequency noise in accordance with equal loudness contours. One of these weighting networks was designated "B" and was originally employed for estimation of sounds between 55 and 85 dB in level. The B-weighting is implemented by a simple electrical network which provides the weighting shown in Figure BL-1.

Presently B-level is not widely used because of the popularity of A-level for all levels of sounds.

CALCULATION METHOD

B-level can be determined using a sound level meter that contains an electrical network for B-weighting. B-level also may be estimated by applying B weighting values (Figure BL-1, Table BL-I) to octave or one-third octave frequency band measures and summing the bands on the basis of their squared pressures (often referred to as summation on an *energy* basis).

TABLE BL-I B-WEIGHTING CORRECTION FUNCTIONS

One-Third Octave Band Conter Frequency Hz	Octave and One-Third Octave Band Corrections <u>dB</u>	One-Third Octave Band Conter Frequency Hz	Octave and One-Third Octave Band Corrections dB
50 [°]	-11.6	1000	0.0*
63	- 9.3*	1250	0.0
80	- 7.4	1600	0.0
100	- 5.6	2000	-0.1*
125	- 4.2*	2500	-0.2
160	- 3.0	3150	-0.4
200	- 2.0	4000	-0.7*
250	- 1.3*	5000	-1.2
315	- 0.8	6300	-1.9
400	- 0.5	8000	-2.9*
500	- 0.3*	10000	-4,3
630	- 0.1	12500	-6.1
800	0.0		

*Octave band corrections

EXAMPLE

Use Table BL-I and follow the procedure in the example for A-level (Table AL-II).

- EQUIPMENT 1) A sound level meter or equivalent equipment with a B-weighting network adhering to the above mentioned standards (ANSI, IEC).
 - OR, equipment for determining octave band or one-third octave band noise measurements.

REFERENCES

- Anonymous, "B & K Handbook", Bruel & Kjaer Instruments, Inc. (1971).
- Peterson, Arnold, and E. E. Gross, Jr., "Handbook of Noise Measurement", General Radio Company, (1972).

18

C-LEVEL (CL) (L_C)

UNIT

TITLE

dB(C) (dB) Reference pressure: 20 µN/m²

DEFINITION

C-weighted sound pressure level or C-level is sound pressure level which has been frequency filtered to approximate overall sound pressure level for the average range of human hearing. C-level is measured in decibels with

a standard sound level meter with frequency characteristics which provide a response curve as shown in Figure CL-1.

STANDARDS

 American National Standards Institute Specification for Sound Level Meter (S1.4-1971)

- IEC Recommendation, Publication 123. Recommendation for Sound Level Meters, 1961
- IEC Recommendation, Publication 179. Precision Sound Level Meters, 1965
- IEC Recommendation, Publication 225.
 Octave, Half-Octave, and Third-Octave Band Filters Intended for the Analysis of Sounds and Vibration, 1966

Preceding page blank

GEOGRAPHICAL USAGE International

PURPOSE C-level was originally intended to be a measure that would correlate with the loudness of sounds above 85 decibels. It is now used as an overall measure of any level of noise with equal weighting given to levels at frequencies from 31.5 to 8000 Hz.

BACKGROUND As initially conceived C-level was a measure of the total sound pressure level of a noise. Even now C-level and overall sound pressure level (SPL) are usually thought of as synonymous. However, C-level does have some weighting factors at the low-and high-frequency ends. This accounts for the small differences in level between applying the C-level curve and the more nearly uniform response curve of OASPL. In spite of this limitation C-level still provides a reasonable approximation of overall sound pressure level for most common sounds.

CALCULATION METHOD C-level can be determined using a sound level meter whose overall frequency characteristics provide a frequency response as shown in Figure CL-1. C-level also may be estimated by applying the C-weighting values (Figure CL-1, Table CL-I) to octave or onetnird octave frequency band measures and summing the bands on the basis of their squared pressures (often referred to as summation on an *energy* basis). Normally the summation can be made without the weighting C-scale since the corrections are relatively small.

TABLE CL-1 C-WEIGHTING CORRECTION FUNCTIONS

One-Third	Octave and	One-Third	Octave and
Octave	One-Third	Octave	One-Third
Band Center	Octave Band	Band Center	Octave Band
Frequency	Corrections	Frequency	Corrections
Hz	dB	Hz	dB
50 63 80 100 125 160 200 250 315 400 500 630 800	$ \begin{array}{c} -1.3 \\ -0.8 \\ -0.5 \\ -0.3 \\ -0.2 \\ -0.1 \\ 0.0 $	1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000 12500	$\begin{array}{c} 0.0*\\ 0.0\\ -0.1\\ -0.2*\\ -0.3\\ -0.5\\ -0.8*\\ -1.3\\ -2.0\\ -3.0*\\ -4.4\\ -6.2 \end{array}$

*Octave Band Corrections

EXAMPLE	Use Table CL-I and follow the procedure in the example for A-level (Table AL-II).
EQUIPMENT	 A sound level meter or equivalent equipment with a C-weighting network adhering to the above mentioned standards (ANSI, IEC). OR, Equipment for determining octave band or one-third octave band noise measurements.
REFERENCES	 Beranek, Leo, <u>Noise Reduction</u>, McGraw-Hill, New York, 1960. Peterson, Arnold, and E. E. Gross, Jr., "Handbook of Noise Measurement", General Radio Company, (1972).

TITLE

D-LEVEL (DL) (L_D)

UNIT

dB(D) (dB) Reference pressure: 20 µN/m²

DEFINITION

D-weighted sound pressure level or Dlevel is sound pressure level which has been frequency filtered to reduce the effect of the low frequency noise and increase the

effect of high frequency noise. D-level is measured in decibels with a standard sound level meter which contains a "D" weighting network with the response curve shown in Figure DL-1.

STANDARDS

 A standardized D-weighting network is being considered for incorporation in: IEC Recommendation, Publication 179. Fracision Sound Level Meters

 SAE Committee: Frequency Weighting Network for Approximation of Perceived Noise Level for Aircraft Flyover Noise. ARP 1080

Preceding page blank

3) IEC Recommendation, Publication 225. Octave, Half Octave, and Third-Octave Band Filters Intended for the Analysis of Sounds and Vibration, 1966

GEOGRAPHICAL USAGE International

PURPOSE

BACKGROUND

D-level was developed as a simple approximation of perceived noise level (PNL) (see p. 76).

D-level is similar to A-level in that it attenuates the lower frequencies in a manner approximating the behavior of the human ear. However, D-level was intended to relate to the relative noisiness of broadband spectra while A-level was intended to relate to *loudness*. D-level replaced N-weighted sound level (N-level) which was a much earlier measure for estimating PNL.

The D-weighting network provides a frequency response comparable to the inverse 40-noy contour of equal annoyance. This network when incorporated into a sound level meter provides a simple approximation of the judged perceived noise level (PNL) for a variety of sounds. PNL can be estimated from the sound level reading of D-level by this equation:

$$PNL \stackrel{\sim}{\rightarrow} DL + 7$$
[1]

Kryter (1970) proposes three different Dlevels: D_1 , D_2 and D_3 as means of estimating PNL. He notes that the D_2 weighting is adjusted to take into account relatively fewer number of critical bands below 355 Hz than above. It is recommended that D-level be used as an estimator for PNL only for those sounds having their energy predominantly above 355 Hz.

CALCULATION METHOD

D-level can be determined using a sound level meter that contains an electrical network for D-weighting. It also may be estimated by applying the D-weighting values (Figure DL-1, Table DL-I) to octave or one-third octave frequency band measures and summing the bands on the basis of their squared pressures (often referred to as summation on an *energy* basis). If octave or one-third octave measurements are available probably PNL should be calculated instead of D-level inasmuch as D-level is only an approximation of perceived noise level.

TABLE DL-I

D-WEIGHTING CORRECTION FUNCTIONS

٠

te:

.....

ť

-

One-Third	Octave and	One-Third	Octave and
Octave	One-Third	Octave	One-Third
Band Center	Octave Band	Band Center	Octave Band
Frequency	Corrections	Frequency	Corrections
Hz	dB	Hz	dB
50 63 80 100 125 160 200 250 315 400 500 630 800	-12.8 -10.9* - 9.0 - 7.2 - 5.5* - 4.0 - 2.6 - 1.6* - 0.8 - 0.4 - 0.3* - 0.5 - 0.6	1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000 12500	0.0* 2.0 4.9 7.9* 10.6 11.5 11.1* 9.6 7.6 5.5* 3.4 -1.4

*Octave Band Corrections

•	EXAMPLE		Table DL-I and follow the procedure in example for A-level (Table AL-II).
	EQUIPMENT	1)	A sound level meter or equivalent equipment with a D-weighting network adhering to the above mentioned standards (IEC).
		2)	OR, Equipment for determining octave or one-third octave band noise measurements.
	REFERENCES		Kryter, Karl D., <u>The Effects of Noise on</u> <u>Man</u> , Academic Press, New York, 1970. Peterson, Arnold, and E. E. Gross, Jr., "Handbook of Noise Measurement", General Radio Company, (1972).

CHAPTER II

٩

ч.

こう、 プレート たんこうかん

COMPUTED LOUDNESS AND ANNOYANCE RATINGS

29

Preceding page blank

TITLE

LOUDNESS LEVEL (LL_Z) ZWICKER

UNIT

Phons

DEFINITION

The Loudness Level is a single number rating of the loudness of a sound signal calculated from acoustic measurements made in octave or one-third octave bands.

STANDARDS International Organization for Standardization, ISO Recommendation R532. Method for Calculating Loudness Level (1966) (Method B)

GEOGRAPHICAL USAGE International

PURPOSE

Loudness Level was developed in an effort to provide an acoustic measure that would correlate highly with people's assessment of the loudness of a sound.

> PAGES 31 AND 32 ARE BLANK

BACKGROUND

The numerical value of Loudness Level (LL_Z) is intended to represent the sound pressure level (SPL) of a one-third octave band of noise centered at 1000 Hz judged to be equally as loud as the sound being rated. Today, the term *Loudness Level* denotes a calculation procedure rather than results from a judgment test.

The method uses one-third octave band noise data and can be employed for any type spectra including those with pure tones. This is because the Zwicker method more accurately accounts for effects of remote masking than does the simpler Stevens' method ($LL_S p. 50$). These two methods also differ in other respects and the results do not always agree. Slightly higher results are obtained for the same sounds with the Zwicker method than with the Stevens method. There may be a computed difference in results as great as 5 phons.

CALCULATION METHOD

The Zwicker method uses one-third octave band sound pressure levels to calculate the loudness of steady complex sounds. The Loudness Level (LL_Z) in phons is calculated by means of a formula or from the nomograph of the formula (Figures LL-1 Z

The procedure is as follows:

1) Select a graph (Figures LL_z -1 to 5 for frontal sounds (GF) or Figures LL_z -6 to 10 for a diffuse field (GD))which is appropriate to the type of sound field involved and which includes the highest one-third octave band level measured (in decibels).

2) For frequency bands *above* 280 Hz, plot the measured band levels on the appropriate graph as horizontal lines so that the cutoff frequencies of the one-third octave bands correspond to the abscissa of the graph and the measured band levels correspond to the numbering of the stepped curves on the graph.

3) For frequency bands below 280 Hz, the one-third octave band data are grouped as follows to obtain corresponding band levels L_1 , L_2 and L_3 before entering them on the graph.

- L₁ Combine all bands with center frequencies up to 80 Hz.
- L₂ Combine the bands with center frequencies of 100, 125 and 160 Hz.
- L₃ Combine the bands with center frequencies of 200 and 250 Hz.

ເລ ບັ

•

•

FIGURE LL-1. CALCULATION NOMOGRAPH FOR LOUDNESS OF FRONTAL SOUND (GF)

.

ì

.

9Ε

.

ı.

,

FIGURE LL-3. CALCULATION NOMOGRAPH FOR LOUDNESS OF FRONTAL SOUND (GF)

FIGURE LL-4. CALCULATION NOMOGRAPH FOR LOUDNESS OF FRONTAL SOUND (GF) z

۰,

.

...

· ·

9

the second s

,

ì.

FIGURE LL-5. CALCULATION NOMOGRAPH FOR LOUDNESS OF FRONTAL SOUND (GF)

- -

التابية بالتابين الراويونيسته ستمتز ريش

. .

.

and the second second

40

Ì.

FIGURE LL-7. CALCULATION NOMOGRAPH FOR LOUDNESS OF DIFFUSE SOUND (GD)

-41

1

and a second

.

FIGURE LL-8. CALCULATION NOMOGRAPH FOR LOUDNESS OF DIFFUSE SOUND (GD) z

43

مستخديه والانتهادية

.

ı

44

r.

. .

The rule of combination is illustrated in the following example:

 $L_2 = 10 \log [antilog(L_{100}/10) + antilog(L_{125}/10)]$

+ antilog($L_{160}/10$)] [1]

where:

L₁₀₀ etc. is the measured onethird octave band sound pressure level for the band with a center frequency of 100 Hz.

Plot each of these combined levels as a horizontal line of the width of the combined band, so that the levels correspond to the numbering of the stepped curves on the graph.

4) Where the steps formed by these horizontal lines are rising with frequency, the adjacent horizontal levels are connected by vertical lines at the frequency separating the two bands. When the level in the next highest frequency band is lower, the fall is drawn as a downward sloping curve interpolated between the dashed curves on the graph, starting from the right-hand end of the horizontal line.

The area enclosed by the whole stepped figure obtained by the previous method corresponds to the <u>total loudness</u>.

5) The total loudness may be converted into Loudness Level in phons by utilizing a planimeter. Transform the enclosed area on the graph into a rectangle with the same area and having a base equal to the abscissa of the graph by means of tracing the area outline with a planimeter.

i

Т

The computed height of the rectangle gives directly the Loudness Level in phons (GF) or (GD) from the scales on either side of the graph.

6) The sones (GF) or (GD) corresponding to the phons may be read from the second scale on the right *or* computed from the following equation:

$$LL_{2} = 40 + 10 \log_{2} S_{+}$$
 [2]

where:

 S_+ is the total loudness in sones.

1

EXAMPLE

An example of the Zwicker Loudness Level (LL_Z) method using an aircraft flyover noise spectrum is shown in Figure LL_Z -ll. First the flyover spectrum is plotted on the appropriate graph for frontal sounds (GF) and the connecting lines added according to the calculation procedure.

Next the area under the resulting step curve is determined with the planimeter and related to total phons. In this case the Loudness $Level_2$ is calculated at 112.3 phons (GF).

The corresponding sones are:

 $112.3 = 40 + 10 \log_2 S_{\pm}$

 $\log_2 S_{\pm} = 7.23$

 $S_{+} = 150.12$ somes (GF)

EQUIPMENT

ŝ,

:

1) Tape recorder (necessary for single event

- 2) Sound level meter (IEC Standard)
- 3) Octave or 1/3 octave band analyzer
- 4) Digital computer optional

5) Planimeter

48

.....

.

REFERENCES

đ

- 1. Zwicker, E., "Lautstarkeberechnungsverfahren im Vergleich", ("Comparison of Procedures for Calculations of Loudness"), Acustica <u>17</u>: 278-284 (1966).
- Zwicker, E., "Uber psychologische und methodische Grundlagen der Lautheit", ("Concerning the Psychological and Methodical Bases of Loudness"), Acustica 8, Beiheft 1: 237-258 (1958).
- 3. U. S. Environmental Protection Agency, "Fundamentals of Noise: Measurement, Rating Schemes, and Standards", (December, 1971), NTID300.15.
- Kryter, Karl D., <u>The Effects of Noise</u> on Man, Academic Press, New York, 1970.

TITLE	LOUDNESS LEVEL (LL _S) STEVENS MARK VI
UNIT	Phons
DEFINITION	The Loudness Level is a single number rating of the loudness of a sound signal calculated from acoustic measurements made in octave or one-third octave bands.
STANDARDS	International Organization for Standardi- zation, ISO Recommendation R532. Method for Calculating Loudness Level (1966) (Method A)
GEOGRAPHICAL USAGE	International
PURPOSE	Loudness Level was developed in an effort to provide an acoustic measure that would correlate highly with people's assessment of the loudness of a sound.

BACKGROUND

•

The numerical value of Loudness Level in phons was originally intended to represent the sound pressure level (SPL) of a 1000 Hz pure tone judged to be equally as loud as the sound being rated. Today, the term Loudness Level denotes a calculation procedure rather than a judgment test.

This method uses octave bands or one-third octave band noise data and should be employed only when the sound spectrum is relatively smooth and contains no pure tones. Further, this method is only applicable to diffuse sound fields. Details in the calculation procedure have been revised over the years although the basic method has remained essentially the same. Briefly, the LL_s method converts band SPL's to loudness in sones (or Loudness Index), sums the results and converts the sum to the logarithimically scaled quantity - phons. In some cases somes are used directly since they are claimed to constitute a ratio scale of loudness (e.g., twice as many sones means twice as much loudness).

CALCULATION METHOD

The calculation procedure for Loudness Level (LL_S) is composed essentially of a graph (Figure LL_S-1) and a formula. For a more accurate estimation of the loudness indices, additional computations may be made in conjunction with Table LL_S-I. The graph or

· 📥 🚽

Band pressure	Loudness	Band pressure	Louancas	Band pressure	Lrudness
level (dB)	incex	level (dB)	index	level (dB)	index
15	0.10	50	2.68	85	23.0
16		51	2.74	55	24.7
17		52	3.0	87	26.5
18		53	3.2	68	28.5
19		54	3.4	89	30.5
10 21 22 23 23 24	0.13 0.22 0.06 0.30 0.35	55 56 57 58 59	3.0 3.8 4.1 4.0	90 91 92 93 94	33.0 35.3 38.0 41.0 44.0
25 26 27 23 29	0.40 0.45 0.50 0.55 0.61	60 61 62 63 64	4.9 5.2 5.3 6.2	55 55 97 53 93 99	43 52 56 61 65
30 31 32 33 33 34	0.67 0.73 0.90 0.57 0.94	65 66 67 63 69	6.6 7.0 7.4 7.8 6.3	100 101 102 103 104	71 77 83 93 97
25	1.02	70	5.8	105	165
30	1.10	71	9.3	106	113
37	1.18	72	9.9	107	121
38).27	73	10.5	103	130
29	1.35	74	11.1	109	139
+0 +1 +2 +3 +4	1.44 1.54 1.64 1.75 1.87	75 76 77 73 73 79	11.5 12.6 13.5 14.4 15.3	1:0 1:1 1:2 1:3 1:4	1-9 160 171 184 197
45	1.99	80	16.4	115	211
46	2.11	81	17.5	116	225
47	2.24	82	18.7	117	242
48	2.38	83	20.0	118	260
49	2.53	84	21.4	119	278

TABLE LL-I S Loudness index at 1000 Hz (c/s)

ς

•

table provides a summation rule for combining the loudness indices in order to compute the total loudness.

The procedure is as follows:

 From Figure LL_S-1 convert the sound level in each band to the proper Loudness Index in sones.

 The total loudness in sones is found by the following summation rule:

$$S_t = S_m + F(\sum_{i=1}^{24} - S_m)$$
 [1]

where:

- S_t is the total loudness of a sound (in sones)
- S_m is the loudness of the loudest band (maximum Loudness Index)
- F is the factor which equals: 0.15 one-third octave band measures 0.20 one-half octave band measures 0.30 octave band measures
- S is the Loudness Index for frequency band i
- n equals 24 for one-third octave band measures equals 16 for half-octave band measures equals 8 for octave band measures

54

111111

. . . .

3) The total loudness may be converted into Loudness Level by the following formula:

•

h

$$LL_{S} = 40 + 10 \log_{2} S_{+}$$
 [2]

A nomograph giving this relation is included in Figure LL_S -1. The value of LL_S so obtained is expressed in phons.

TABLE OF LOUDNESS INDEX (Table LL_S-I)

In Table LL_S-I values of the Loudness Index are tabulated for the frequency of 1000 Hz. Values at other frequencies can be obtained by means of the following rules. The value of the Loudness Index is constant on the contour having a slope of -3 dB/octave. Above 9000 Hz the contour has a slope of 12 dB/octave. Below a certain frequency the contour has a slope of -6 dB/octave. The frequency at which this change of slope occurs lies on a line having a slope of -21 dB/octave. This line passes through the point determined by 1000 Hz and 10 dB band pressure level.

EXAMPLE

An example of the Stevens Loudness Level (LL_S) method using an aircraft flyover noise spectrum is shown in Table LL_S -II. Here the one-third octave band levels are tabulated and converted Loudness Index (in sones). Calculated, $S_m = 105$ sones and F = 0.15, then from equation [1] it follows that:

1

t

 $S_{+} = 105 + 0.15 (509.6 - 105)$

= 165.69 sones

The total loudness is converted to Loudness Level in phons by:

 $LL_{S} = 40 + 10 \log (165.69)$

= 113.72 phons

EQUIPMENT

- Tape recorder (necessary for single sample)
- 2) Sound Level Meter (IEC Standard)
- 3) Octave or 1/3 octave band analyzer
- 4) Digital computer optional

TABLE LLS-II

Ţ,

ک

化分子管 化基本 医后下部的复数形式 医达勒特斯 网络糖果树 计时间时间

EXAMPLE OF LLS CALCULATIONS FROM ONE-THIRD OCTAVE BAND MEASUREMENTS OF AIRCRAFT FLYOVER

Band Center Frequency Hz	Band Level dB	Loudness Index sones
50	74	3.7
63	76	5.0
80	73	4.7
100	66	3.2
125	77	7.8
160	80	9.9
200	85	14.4
250	83	13.5
315	76	9.3
400	79	11.8
500	79	12.6
630	80	14.4
800	80	15.3
1000	82	18.7
1250	83	21.4
1600	84	24.7
2000	89	38.0
2500	101	105.0
3150	90	48.0
4000	84	33.0
5000	87	44.0
6300	77	23.0
8000	74	20.0
10000	61	8.2

 $\Sigma S = 509.6$

 $s_t = 105 + 0.15 (509.6 - 105)$ = 165.69 sones $LL_s = 40 + 10 \log_2 (165.69)$

= 113.72 phons

REFERENCES

 Stevens, S. S., "Calculation of the Loudness of Complex Noise", J. Acoust. Soc. Am. 28: 807-832 (1956) (Mark I).

7

÷,

- Stevens, S. S., "Procedure for Calculating Loudness: Mark VI", J. Acoust. Soc. Am. 33: 1577-1585 (1961).
- 3) U. S. Environmental Protection Agency, "Fundamentals of Noise: Measurement, Rating Schemes, and Standards", (December, 1971), NTID300.15.

.

TITLE	PERCEIVED LEVEL (PL) MARK VII
UNIT	PLdB
DEFINITION	The Perceived Level is a rating of the loudness or noisiness of a noise signal calculated from acoustic measurements made in octave or one-third octave bands.
STANDARDS	(None)
GEOGRAPHICAL USAGE	Limited
PURPOSE	Perceived Level (PL) was developed as a measure of the loudness or noisiness of sounds to provide a compromise between Perceived Noise Level (see p. 76) and Stevens' Loudness Level (see p. 50).

Preceding page blank

/ N I

7

ĸ.

;

BACKGROUND

7

۶,

Perceived Level (PL), known also as Mark VII, is a 1972 revision of the Loudness Level (Mark VI) developed by S. S. Stevens to incorporate research done both on loudness and noisiness. The main changes include:

1) The reference sound is a one-third band of noise centered at 3150 Hz instead of a 1000 Hz tone, and this sound at a level of 32 dB, re $20 \ \mu N/m^2$, is assigned a perceived magnitude of 1 sone. This new reference standard results in a decrease in Perceived Level in decibels (PLdB) of 8 dB as compared to the phon values of Mark VI.

2) The equal loudness and noisiness contours are changed to incorporate new data of loudness and noisiness research.

3) Doubling the perceived magnitude (loudness/noisiness) in sones is now accomplished by raising the signal level by 9 dB instead of the previously used 10 dB.

4) The masking factor, F, in the calculation procedure now varies with level instead of remaining constant.

CALCULATION METHOD

The calculation procedure for Perceived Level assumes that the noise signal has been measured in one-third or octave bands. Summarily, the levels in each band are converted into a perceived value in sones and then totaled according to a summation rule. The total is then converted into a calculated Perceived Level in decibels (PLdB) by means of the power function relating perceived magnitude to sound pressure.

The calculation procedure for PL is the following:

1) From Figure PL-1 or Table PL-I convert the sound level in each band to the proper perceived magnitude (loudness or noisiness) in sones.

2) Using the maximum perceived magnitude, S_m , find the factor, F, from Table PL-II. If octave bands are used, subtract 4.9 dB from the level of the loudest band. Then find the corresponding some value which will be used for obtaining the factor F (Table PL-II); double this factor and use it as F.

 The total perceived magnitude in sones is found by the following summation rule:

ĩ

1

;

I I ·

Band 17	18	19	20	71	77	7 3	25	75		r	ני	1.	ie h	•	41
Tces 50	63	80	100	175	160	200	?50		4n0- 1250	1600	2000	2500	3150- A:M	10,000	12.500
1 48													.078	[•
2								1					•0¶7	Į	
) L										1		.07P .047	.097		
											.07#	.021	114	.079	
5 6 7											041	.107	.179	.087	
										.078	.097	•118	+141	.097	
8 9									.078	.0A7	.107	-129	- 15 - 166	(.107 .119	.078
									.017	.107	120	.153	181	.172	.0A7
10 31									.077	.118	.141	• 1 • •	196		1001
12									.107	+129	- 153	·141	1.515	1.153	.107
13								.017 .061	.11A .129	.141 .153	+164 +101	.126	244	.166	-118
															.129
15 16								.097 .107	.141	.166 .181	.196	-730 -24 A	• 769 • 790	.196	,14) ,15)
17							.076	.119	-166	,196	. 230	.210	+314	.210	•16G
18							.084	-130	.101	.212	.244	+240	3 39	.248	.101
19							•097	+14J	.196	•230	, 269	+ 314	• 36.7	,219	•196
20 21						.075	.10A .120	- 156 - 169	.215	.248	.220 314	· 339 • 367	.326	.190	*530 *515
.,						086	.131	.1/15	.240	.220	. 117	376	. 463	.112	.248
23						.047	.144	.201	.269	- 114	. 167		.500	- 167	•2(9
24						•10H	.156	.719	.770	.319	• 126	.46]	.540	+326	.290
25 . 2ú					1074 1085	.121 .134	.173	.737	.314	. 367 . 396	, 128 , 163	.500 .540	.483 .630	1.2 A	.314
21					.097	347	.707	.279	367	,L2A	,500	. 56 1	.690	100	. 367
28					.110	.162	.224	• 102	+ 326	.463	.540	,630	.735	.540	. 396
t)				.073	.122	.178	.244	• 379	. 628	.500	• 583	.(-80	+7-94	-583	.428
30 31				.025	.116 .149	.194 .712	.267 .290	• 356 • 184	.463	.540 .583	.630 .680	.735 .724	.857 .976	.630 .6 ⁴ 0	.463 .900
32				,110	.155	.233	.316	415	.540	.630	.735	857	1.00	135	.540
33			072	.123	.182	- 75	+345		1583	.GRD	• 794	.9.6	1.08	104	.563
34			,081	.137	.701	.277	. 375	, <u>490</u>	.630	•735	•A21	1.00	1.17	• ^R 57	• 10
35			1021	.153	.221	. 304	.406	• 531 • 576	680	.794	.926	1.08	1,26	.926	.680
36 37		.070	.111	,169 ,187	,241 ,261	- 332 - 361	.662 .681	624	735	.857	1.00	1.17	1.36	1.00	.735 .794
38		.06L	,140	101	.290	, 396	.523	. 676	857	1.00	1.17	1.37	1.59	1.17	.857
39		.097	.156	.228	• 319	+431	.570	. 732	.926	1.08	1.26	1.47	1.72	1.26	•926
40		-115	.173	.250	.350	.470	.620	. 796	1,00	1.17	3.36	1.59	1.85	1.36	1.00

1

2

۲

•

٠

.

TABLE PL-I Perceived imagnitude in sumer as a function of bond pressure level.

.

64

.

TABLE PL -J (continue)

•

t

•

. :

٠

•

٢

ھ

•

Ban d	11	15	19	20	21	22	23	2 h	25	26-11	પ્ર ર	33	36	35-37	40	-1
freg	50	63	80	100	125	160	200	250	315	1250		2000	2500	1150- 8000	10,000	12.50
														<u> </u>		
10 43			.112			.1.0					1.17	1.3h 1.67	1.5	1.45	1.36	1.0
41 42			.176	.191	,271 ,304	• 1A1	.511	.672		1.08	1.6	1.59	1.85	2,00	1.11	1.0
			.142			,61A								7.16		
13 14		690	.160		. 337	.457	.611	,794 ,664		1.36	1,57	1.71	2.00	7.13	1.71	1.20
		.079					.665							2.52		
45		.072				.552	. 727			1.67	1.71	2.00	5.13	2.12	2.00	1,47
46		.107			64.0	•606	. 794	1.07	1.28	1.59	1,45	5.10	2.12	2.94	2.16	1.57
47		,121			.192	.660	666		1.30	1.71	2,00	2.11	5,15	3.18	2.31	1.71
48		.13				.7.%	.945		1,50	1.85	2.16	2.52	1.94	3.43	2.52	1.1
49		.156	. 307	.435	-597	, 7 1 1	1.03	1.31	1.64	5.00	5.31	2.72	3,18	3.70	2.72	5.0
50	.072	.176	. 341	61		.871	1.12	1.42	1.77	2.16	2.52	.94	3.43	4.00	2.94	2.16
51	.086	.197	.378		.124	.955	1.23	1.55	1,91	2.33	5'15	3,18	3.70	4.32	3.18	2.33
52	.101	,222	.422	.568	.794	1,94	1,34	1.69	2.08	2.52	2.96	3,43	4,00	1 6.67	3.43	2.52
53	.117	,250	, 468	.649	.871	1,14	1.06	1.82	2,26	5.15	1.18	3.10	4.32	5.06	1,70	P.17
54	.134	-279	.519	.718	.962	1.25	1.59	1.98	2.44	2.04	1.43	4.00	4,67	5.64	1,00	2.9L
55	.152	• 31 4	.579	.194	1.06	1.37	1.74	2.16	2.64	3.18	3.70	4.32	5.04	5.86	4.32	3.1/
56	.175	317	. 643	,617	1,17	1.50	1.90	2.35	2.15	3.1.3	4,00	4.67	5,44	6, 35	4,67	9.4
57	.197	. 390			1.28	1.65	2,06	2.56	3,10	3.70	4,12	5.04	5.09	6.86	5.04	3,70
58	.222	.435	.796		1.40	1,00	2.76	2.78	3,35	4.00	4,67	5.44	6.15	7.61	5.46	L.nc
59	.250	400	.862		1.55	1.97	2,46	3,01	1.65	4.32	5,04	5.88	6.86	A.00	5,88	6.32
60	.282	.546	.977	1.31	1.70	2.16	2,68	3.27	3.94	4.67	5.64	6.35	7.41	8.62	6.35	4.61
61	. 319	.611	1,09	1.45	1.07	2,37	2.94	3,56	1,27	5.04	5,88	6.86	P.00	9.33	6.46	5.04
62	. 350	.606	1.21	1,60	2.06	2.60	3.20	1.08	4.61	5.44	6 15	7.41	6.64	110.1	7.41	5.44
63	.402	. 762		1.77	2,26	2,81	3.48	4,22	5.00	5.08	6.46	8.00	9.13	10.9	P.00	5.08
64	.454	.651		1.95	2.50	3.10	3.79	h 5d	5.64	6.35	7.1	6.61	10.1	11.8	8.66	6.35
65	.511	•	1.66	2.16	2.74	3.40	4.16	4,96	5,88	6.AG	A.00	9.13	10.9	12.7	9.13	6.86
66	.574	.952 1.06	1.84	2,39	3.01	3.73	4.52	5.40	6.37	7.41	8.14	10.1	11.8	13.7	10.1	7.41
67						4.02		5.88	6,91	6.00	2.13	10.9	17.7	111.6	10.9	6.00
66	.649	1.10	2,05	2,64 2,92	3,32	4.47	6,94 5,40	6.40	7.48	8.64	10.1	11.0	11.7	16.0	11.8	8.64
69	.618	1,33	2.54	3.22	1.02	.02	5.80	6.96	5.10	2.33	10.7	12.7	1.8	17.3	12.1	9,33
-										1 1	r			เ เ		
10	.921	1.66	5.91	3.56	4.42	5.36	6.40	7.55	8.78	10.1	11.8	13.7	36.0	18.7	13.7	10.1
	1.03	1.87	3.13	3.94	4.65	5.86	7.00	8,21	9,51	10.9	12.7	14.8	17.3	20.2	14.8	10.9
	1.16	5.00	3,48	4.35	5.34	6.15	7.64	A.91	10.3	11.0	13.7	16.0	18.7	21.8	16.0	11.8
	1.32	2.33	3,65	4.81	5.88	7.07	8,33	2.70	11.1	12.7	14.8	17.3	20.2	23.5	17.3	15.4
	1.48	2.50	+29	5.32	6.47	7.10	9,09	10.6	12.1	11.7	16.0	18.7	21.8	25.4	18.7	13.7
	.66	2.90	4,76	5.88	7.13	8,46	9.92	11,5	13.1	14.6	17.1	20.2	23.5	21.4	20.2	14.8
	1.87	3.24	5.28	6,50	7.82	9.26	10.8	12,5	14.1	16.0	18.1	21.8	25.4	22.6	21.8	16.0
	2.10	3.62	5.88	7.18	8,61	10.2	11.8	13.5	15.4	17.3	70,2	23.5	27.4	32.0	23.5	17.3
	2,37	4,03	6.53	7.94	9.48	11.1	12.9	14.7	16.6	18.7 (21.0	25,4	29.6	36.6	25.4	38.7
79 i	7,66	4.52	7.26	8,78	10.4	12.7	14.0	16.0	18.0	20.2	23.5	27,4	35*0	37.3	27.4	50.5
80 :	2.99	5.05	8.06	9.70	11.5	13.3	15.3	17.3	19.4	21.6	25,4	29.6	34.6	40.3	29.6	21.6
	1.15	5,61	8.95	10.7	12.6	14.6	16.6	18.7	21.0	23.5	27.	32.0	37.3	43.5	35.0	23.5
	1.79	6, 31	9,96	11.5	13.8	16.0	18.0	20.2	22.6	25.4	27.6	34.6	40.3	47.0	34,6	25.4
	.25	7,05	11.1	13.1	15.3	17.3	19.4	21,8	24.4	21.4	35.0	37.3	41.5	50,8	37.3	27.4
84 4	. 19	7.88	12.3	16.5	16.6	16.7	21.0	23.5	26.4	20.6	34.6	40.1	47.0	54.0	10.3	29.6
85 5	1.40	8,61	13.7	16.0	18.0	20.2	22.6	25,4	28.5	32.0	37.3	43.5	50.A	59.3	43.5	32,0
	5,06	9.85	15.2	17.3	19.4	21.6	24.4	27.4	30.A	34.6	40,1	47.0	54.7	64.0	47.0	34.6
	. 82	11.0	16.6	18.7	21.0	23.5	26.4	29.6	33.3	37.3	43.5	5018	59.3	67,1	50.8	37.3
88 1	.68	12.3	18.0	20.2	22.6	25.6	28.5	32.0	35.9	40.3	47.0	54,0	64.0	74.7	54.9	40.3
	3,64	13.8	19.4	21,8	24.4	27.4	30,8	34.6	38.6	43.5	50.0	59.3	69.1	80,6	59.3	43.5
					26.4				41.9	47.0	54.9	64.0	74.7	87.1	64.0	47.0
90 9	.71	15.4	\$1*0	23.5	20.4	29.6	33.3	37.3	-1.7	-110	2442	04,0	1.44.1	19794 L	····	-r.u

IABLE PL-I (continue) Perceived magnitude in somes as a function of band pressure level.

			cesura	136 goi 10		DAPS A										<u> </u>
Band	17	18	19	20	21	22	23	24	25	56-31	32	33	34	35-35		41
Lees.	<u>50</u>	63	0	100	175	160	200	250	315	400- 1250	1600	2000	2500	3150- 8000		12,500
90 91	48 9,71 19,9	15.4 16.4	1 22.6		26.4 20.5	22.6 32.0	1343 1549	37.3 40.3	45.2		59.3	64,0 69,1	74.7 80.6	94.1		Ն7.0 ՏՕ,9
93 93	12-3	18.3	5 ph.4	27.4 79.6	10.A 31.3	14.6	38.B	61.5 67.0	52.8	59.3	62.1	71. 7 80.6	A7.1 94.1	110	74 T	56.9 59.3
94 95	15.6	21.3 23.3	30.8	15°0 37°6	35.9 30.0	۵۹, ۲ ۱۹, ۶	45.2	50,8 54,9	61.6	67.1	80.6	87.1 94.1	102 110	119 128	97.1 94.1	64.0 69.1
90 97	18,6 20,3	25.3 27.4	35.9	17.3	45.1	47.0 50.8	52.8	59.3 64.0	71.9	80.6	94.2	102 110	117 128	138	102	76.7 Po.6
98 99	22.1	29,8 37,3	i i1.9	43.5 47.0	18.9 52.8	54.9 59.3	61.6 66.6	69.1 74.7	77,6 83,P	94.1	107	119	138 149	161	119 128	87 .1 94.1
100	26.J 28.6	35.3) 4A.9	50.8	51.1	64.0 69.1	71.9 77.6 83.8	80.6 87.1	29.0	110	119 12A	138 149 161	161 175	188 203 219	1 1P 149	102
102 102 101	31.2 34.0 37.0	61.2 66.7 48.5	\$7.0	57.3 64.0 69.1	66.6 71.9 71.6	74.7 Po.6 87.1	90.6 91.0	94.1 107 110	106 114 124	119 128 138	138 149 161	174	188 203 719	237	161 174 188	119 128 138
105	40.6	52.4	66.5	74.T	A).8	94.1 102	106	119 120	133	149	174	203 219	231 256	216	203 219	149
107	44,0 52-3	61.8	1 77.6	87.1	98,0 106	110	174 133	138	155	174	203	237 256	276 299	323 348	237 256	174 188
109 110	57.0	72.0 78.9	90.5	102	114 124	128 138	144 155	161 174	151 196	20) 219	237 256	276 299	323 348	376	276 299	203 219
111 112	67.5 73.4	85.6 92.9	106	119 120	133 166	169 161	168 181	168 203	211 226	237	276	323 348	376 406	439 474	323 348	237 256
113 114	60.5 81.1	101 109	123 133	138 149	155 168	176 188	196 211	219 237	246 266	276	323	376 406	439 11	512 553	176 106	276 299
115 116	95.6 104	119 129	326 155	161 174	181 176	203 219	228 246	256 276	288 311	323 348	376 406	639 676	512 553	597 645	439 474	123 348
117 118 119	114 124 135	139 157 161	168 181 196	188 701 217	211 228 246	237 256 276	266 288 111	299 373 348	136 162 391	1 376 1 06 1 19	639 676 512	512 553 597	597 645 697	697 752 613	512 553 597	376 406 432
120 121	147	178 193	211 228	211	2644 2159	200 171	336 362	176 406	612 656	476 512	553 597	645 697	752 813	876 948	645 697	171 512
153	175	209	246 266	276 209	311 336	348 376	391 422	439 474	193 532	553 597	64 5 69 7	752 813	818 849	1024 1196	752 A13	553 577
124	207 276	246 267	287 310	373 348	362 371	406 619	456 493	512 557	575	645 677	752 813		1024 1106	1394 1290	878 948	645 697
126	246 268	270 31	335 362	376 406	422	474 517	579 584	606 660	676 735	752 813	878 948	1024	110% 1290	1393	1024 1106	752 813
128 129	293 319	341 370	391 422	6 19 676	L93 536	562 616	635 697	71] 776	794 864	878 968	1024 1106		1393 1505	1625 1756	1194 1290	878 948
130 131	348 379	401 435	456 493	512 566	593 650	670 735	758 N25	865 919		1024 1106	1196 1290	1505	1625 1756	1896 2018	1505	1024 106
132	413	472 512	5L0 600	625 691	713 708	P06 P85	9/15	1001 1089	11/15	1194	1393	1756	1826 2048	2212	1756	1174 1290
134	490 543	572 640	666 740	764 045	9464 948	1066	1167	1176 12P0	1391	1393	1625	2014	2212 2389	2580 2787	2048	1393
136	611 697	715 799	R23 914	1032	1160	1770	1 39 3	1516	1615	1625 1756 1896	2018	2389	2580 2787 3010	3010 3251 3511	2382	1675 1756 1896
136	773 870	873 998		1261	1393	1528	1663	1797	1925	2018	5366	2787	3251	3792	2787	2048
110	919 1	1115	1256	1393	1578	1676	1810	1940	2050	2212	2580	3010	3511	4('90	3010	2212

ļ

66

i

į.

TABLE PL-III The factor F as a function of the number of
sones in the 1/3 octave band that is maximally loud or noisy.
The separation between successive sone values corresponds
to 1.0 dB. The value of F remains constant above 219 sones.

ì

•

Ì

4

.

۱

Sones	5	Sones	F	Sones	r	Sones	F
,181	.10	1.45	• 314	18,7	, 194	188	.225
. 196	.122	5,00	.311	50.5	.193	203	,226
,212	.140	2.16	.308	21.8	.192	210	.227
,230	,158	0.34	. 104	23.5	.101	237	.227
* 5#9	.174	2.52	• 300	25.4	100	256	.251
269	.187	2.72	.206	27.4	.190		•
.290	•500	2.74	.202	29.6	.190		
•314	.515	3.18	. 288	32.0	.100		
.339	.222	3.43	•500	34.6	.100		•
. 367	•535	3.70	.279	37.3	.190		•
.396	.241	H.00	.275	10.3	.191		
*1º58	.250	4.32	.270	113.5	.301		
ւհն3	.259	4.67	.266	47.0	.192		
.500	•26T	5.04	.262	50.8	.103		
.5%0	.27%	5.44	.258	54+0	104		
, 583	.281	5 AA	+253	52.3	.195		
.630	-207	6.35	.248	64.0	.197		
•680	- 20 T	6,86	.244	62.1	.109		
.735	•50H	7.41	•500	74.7	+507		
•794	• 303	6*00	•532	80.6	.203		
.857	.30B	8.64	.730	87.1	.205		
•950	.312	9.33	.226	94.1	.208		
1.00	•316	10.1	-555	102	.210		
1.08	.319	10.9	.717	110	.212		
1.17	+350	11+8	•515	119	.215		
1.26	.322	12.7	•20 ⁸	128	.217		
1.36	.372	13,7	.204	13/8	.219		
1.67	.350	14,8	,200	249	.221		
1.59	• 314	16.0	.197	161	.273		
1.72	. 317	17.3	105	174	1234		

67

div	n	0.1	0.7	۲.۱	0,4	0.5	0.6	0,7	0.9	0.2
-3	.000	,017	.024	,028	,031	.013	,դ ու	•U18	, o.L.o	, n),
-2	+01.3	101.5	.014	, 347	.01.0	0' 7	C1 2	013	.054	.05
-1	.056	•059	.057	.060	+0(1	0.0	.013	01.5	065	. C.F.
0	,067	.019	.069	.070	,072	073	.074	.075	.075	.07
1	.078	.070	•0Fa	, o Pa	.0/1	.007	003	.0°h	<u>о</u> ,	. OF
2	.0/17	,028	.079	.090	.091	.092	0, 3	.074	095	.02
Ĵ.	.027	.008	.022	.100	.101	,107	.103	.104	.105	.10
í.	.107	.10/4	.110	.111	.112	113	, 114	.115	.116	.11
£	.118	.119	.170	.171	.122	.173	.175	.126	.127	.12
56	.179	,130	.131		.177 .13h					
				.133		-135	•136	.137	.138	+14
7	.141	.147	.143	.144	-146	247	154	-149	.151	.15
6	.153	1.14	156	.157	111	.100	11.1	. 162	.164	•16
9	.166	.163	.160	.171	.172	•173	.175	.176	.178	.17
10	.181	.182	.1/04	.1/15	.187	.188	,100	. 191	.193	,19
11	.196	.197	.179	.001	.702	.204	.205	.707	. 202	.710
12	.212	.716	.215	.217	1210	.271		.224	.226	. 278
13	.230	.731	.231	. 215	.237	.739	21.1	րեյ	. 244	. 26f
14	.268	,250	252	<i>2</i> 14	÷256	25 A	260	762	264	26
-										
15	.269	.771	.273	.275	.277	+279	202	.204	1266	•561
16	*5.00	.293	.205	.297	300	- 305	1304	• 307	+ 309	. 312
17	.314	.316	+ 319	• 371	. 174	- 326	-362	• 335	.334	. 337
18	•339	. 342	. 145	. 367	.350	• 353	. 356	358	•361	. 364
19	.367	• 370	• 372	. 375	.378	. 101	• 304	. 387	. 370	. 39
20	. 376	.397	, 607	.106	. hno	,412	,415	.418	422	.425
21	4. A	431	435	. 1. 3/3	662	445	hhA	452	455	4.55
22	463	166	470	. 473	677	.4.01	464	.688	.492	496
23		50%	507	.511	515	-51Å				
23 24	.500 .540	564	548	- 552	-557	-561	523 565	•577 •570	•531 •574	•530 •579
		-				606				
25	• 5A3	.500	.592	- 597	.601		+611	.615	.620	.625
26	+630	615	.640	-61-5	ሰትባ	.655	.660	.665	.670	.675
27	.680	-686	.691	• 696	1702	101	.712	.718	.724	.720
28	.735	.740	.756	.752	.758	.764	.770	.775	•781	.786
29	.794	. 600	*B00	,812	,818	. A25	.831	.838	·844	.851
30	.857	.864	.871	. A77	.8/14	.091	.898	,905	.912	.919
<u>j</u> 1	.926	.933	,910	.957	.955	.962	.970	.977	.085	.992
<u>j</u> 2	1.00	1.01	1.02	1.07	1.03	1.04	1.05	1.06	1.06	1.07
55	1.00	1.02	1,10	1,10	1.11	1.12	1.13	1.14	1,15	1.16
ĵi	1.17	1.18	1.10	1.19	1,20	1.71	1.22	1.23	1,24	1.25
35	1.26	1.27	1,28	1,29	1.30	1.31	1.32	1.33	1.34	
										1.35
36	1,36	1.37	1.38	1.39	1.40	1.41	1,42	1.44	1.45	1,46
37	1.47	1.60	1.49	1.50	1,52	1.53	1.54	1.55	1.56	1.58
38	1,59	1.60	1.61	1+62	1,64	1.65	1.66	1.08	1.69	1.70
39	1.72	1.73	1.74	1.76	1.77	1.78	1,80	1,81	1.82	1.84
10	1.85	1.87	1,88	1,90	1,91	1,92	1.94	1.95	1.97	1,98
i L	2.00	2.02	2.03	2.05	2.06	2,08	2.10	2.11	5.13	2.14
i2	2,16	2,10	2,19	2.21	2.23	2.24	2.26	2.28	2.30	2.32
3	2.33	2.35	2 37	2.30	2.41	2.42	2.44	2.46	2,68	2,50
a j	2152	2.54	2.50	2.58	2,60	2,62	2.64	2.66	2.68	2.70
15		2.74	2.76	2.78	2,81	2.83	2.85	2.87	2.90	
15	2.72 2.94	2.96	2.08	3.01	3.03	3.05	3.08	2.07	2,90	2.92 3.15
7		3,20	3.22			3.30				
	3,18			3.25	3.27		3.32	3.35	3.30	3.40
6	3.43	3.46	3,48	3,51	3,54	3.56	3.59	3.62	3.65	3.68
19	3.70	3.73	3.76	3.79	3.62	3.85	3.88	3.91	3.94	3.97
50	4.00	4.03	4.06	4,09	4,12	4.16	4.19	4.22	4.25	4.29

ł

.

TABLE PL-III Relation between perceived level in PLdB and perceived magnitude in somes.

68

TABLE PL-III (continue)	
Relation between perceived level i	n PLdB and perceived magnitude in somes.

۱

,

j÷

ł

!

.

,	Relation between perceived level in PLdB and perceived magnitude in sones.											
dB	0	0,1	0.2	0,3	0.4	<u>^, 5</u>	0.6	0,7	o.H	0.9		
50	L.00	6,03	4,00	4,09	6.12	6.16	6.19	6.22	4.75	li 20		
51	4,10	4, 15	5, 13	4.42	և ₊են	հ,հգ	6.52	4,16	1.10	4,63		
52	4.67	4. i u	h. 14	հ, թ	5.81	5,55	4.61		1.00	5.05		
53	5.04	5.04	5.32	5,10	5,20		5.28	5,12	5.36	5.40		
54	5,հե	երից	3	5.57	5.61	5.16	5,70	5.74	5.79	5.83		
55	5,14	5,02	5.97	6.02	6.06	6.11	• • 10	6,50	14.25	(,20		
56	6.35	6,60	ճ,եղ	6,59	<u>በ. 55</u>	6,60	1.1.5	1.10	6.15	6,61		
57	6.86	6.91	6,96	3.05	7.07	7.13	7.18	7.26	7 . 77	7.35		
58	7.41	7.46	7.52	7,58	7.65	7.70	7.76	7.01	7.88	7.94		
59	8.00	8.06	8,12	8,19	11,25	8,32	6.30	А, БЦ	A.51	8.58		
60	A.64	8.71	N. (A	8.44	8.91	A.98	2.05	9.12	9.12	2.26		
61	9.13	9,10	9.68	9,55	9.62	9.70	9.11	1, 115	0,13	10.0		
67	10.1	10.2	19.2	10.3	10.4	10.5	10.4	10.6	10.7	10.0		
63	10.9	11.0	11.1	11.1	11.2	11.1	11.4	11.5	11.6	11.7		
61	11.8	11.8	11.9	17.0	12.1	12.2	12.3	12.4	12.5	12.6		
65	12.7	12.8	12.0	11.0	13.1	13.2	13.3	13.6	13.5	13.6		
66	13.7	11.0	11.9	16.0	11.1	14.1	լե հ	16.5	Ve 6	14.7		
67	16.8	16.9	15.0	1	15.3	1 4	15.5	15.6	15.4	15.9		
68	16.0	16.1	16.7	16.6	16.5	16.6	16.8	16.9	17.0	17.1		
69	17.3	17.4	17.6	17.7	17.8	18.0	18.1	18.2	18.4	18.5		
1	18.7	18.A		19.1								
70			10.0		19.2 20.8	10.4	19.5	19.7	10.0	20.0		
1 71	20.5	70.3	20.5 22.1	20.6		21.0	71.1	71.3	21.4	21.6		
72	21,8 23,5	21.9 23.7	21.9	22.3 24.1	22.5 21.3	27.6 24.4	ድድ በ ድካ ሴ	23.0	23.2	23-3		
73	25.4	25.6	25.0	26.0	26.2	76 h	26.6	24 A 25 B	25.0	25.2		
1									27.0	27.2		
75	27.4	27.7	27.9	28.1	24.3	28.5	28.7	ro o	20.2	29.4		
76	29.6	22.9	30.1	30.3	30.6	30.8	31.0	31.3	31.5	31.8		
77	35.0	37.2	32.5	32.7	33.0	33.3	31.5	11.8	34.0	34.3		
78	34.6	34.0	35.1	34+4	35.6	35.7	36.2	16.5	36.0	37.0		
79	37+3	31.6	37.9	38.2	38.5	38.8	39-1	10.11	39.7	40.0		
80	40.3	40.G	40.9	41.3	41.6	11.9	h# ,2	42.6	42.9	43.2		
81	43.5	63.0	կև,թ	եհ,6	11,9	h5 3	45.6	հն ւս	հճ, 3	46.7		
62	47.0	47.4	47.4	48.1	68.5	64.2	Pa 3	P3*6	50.0	50.4		
83	50.A	51.2	51.6	5: .0	5. 4	52 A	51.2	53.6	54.0	54.4		
84	54.9	55.3	55.7	\$6.1	56.6	57.0	57.5	57.9	58.4	54.0		
85	59.3	52.7	60.2	60.6	61.1	61.6	62.1	62.5	63.0	63.5		
j 86	64.0	64.5	65.0	65.5	66.0	66.5	67.0	67.5	68.1	60.6 J		
07	69.1	62.7	70.2	70.7	71.3	71.8	72.4	73.0	73.5	74.1		
68	74.7	75.2	75.B	76.4	77.0	17.6	78,2	ግዮ በ	ግባ.ስ	80.0 j		
89	80.6	61.3	81.9	82.5	83.2	03.0	B4.4	N5.1	85.8	86.6		
90	87.1	87.8	68.4	82.1	89,8	90.5	91.2	01.9	92,6	93.2		
91	94.1	94.8	95.5	96.3	97.0	97 8	9 ¹ 5	99.3	100	101		
92	102	102	103	104	105	106	106	107	108	107		
93	110	111	111	112	113	114	115	116	117	118		
94	119	119	150	121	192	153	175	175	126	127		
95	128	120	130	331	1.12	133	134	135	136	137		
96	138	130	140	161	143	144	165	146	167	118 1		
07	149	150	152	163	154	155	156	1 A	159	160		
95	161	13	164	145	166	i á	1	170	172	173		
92	174	176	177	176	190	131	182	165	185	157		
100	168	190	191	193	194	196	197	199	200	202		
	100	47W	474	د <u>ج</u> ه 	•7*	•30 	471	477		£.VE		

TABLE PL-III (continue) Relation between perceived level in PLdB and perceived magnitude in sones.

ł

ł

ŧ

,

.

!

48	0	0.1	0.5	0.3	0,4	0.5	0.6	0.7	0.8	0.9
100	188	100	101	123	194	196	197	199	200	535
101	203	205	206	278	210	511	213	216	216	215
102	217	721	223	225	276	229	232	7.2		235
103	237	232	2-1	743	7 4.h	209	243	250	252	255
104	256	758	260	262	264	264	269	270	525	274
105	270	279	281	283	285	277	200	202	276	296
106	299	301	303	306	308	310	313	315	318	320
107	323	305	328	310	333	335	335	340	343	346
106	348	351	354	356	359	362	365	368	370	373
109	376	379	385	385	388	391	304	397	400	403
110	406	409	413	416	419	102	426	620	612	436
111	430	142	446	669	453	456	460	463	467	1.70
112	476	478	հՈւ	485	489	103	liĝ6	500	50%	508
113	512	516	520	574	528	532	536	510	545	549
116	553	557	562	566	570	575	579	584	588	593
115	- 597		606	611	616	621	625	630	635	640
116	645	650	655	660	665	670	676	681	6.96	691
117	627	702	707	713	718	122	730	735	731	747
118	752	750	764	770	776	782	788	794	800	806
119	813	/119	A25	942	830	Bh 5	851	858	064	871
120	878	885	891	RyA	905	917	919	926	934	941
121	948	255	963	070	978	9/15	993	1001	1008	1016
122	1024	1035	10%0	1068	1056	1064	1072	1091	1080	1097
153	1106	1114	1173	11.12	11/10	1149	1158	1167	1176	1185
124	1194	1204	1213	1222	1232	1291	1251	1261	1270	1280
125	1290	1300	1310	1320	1330	1361	1351	1362	1372	1 38 3
126	1393	1404	1015	1950	1437	1448	1452	1471	1462	1493
127	1505	1517	1528	1540	1552	1564	1576	1588	1601	1613
178	1625	1639	1651	1663	1676	1680	1705	1715	1729	1742 1881
129	1755	1769	1703	1797	1810	1854	1838	1853	1867	1881
130	1826	1911	1925	1940	1955	1970	1986	2001	2017	2032
131	2018	2064	2000	2096	2112	2128	2145	7161	2178	2195
132	2212	2229	2246	2263	2281	2500	2316	2334	2352	2370
133	2389	2407	2426	2415	2464	2641	2502	2521	2541	2560
134	2580	2600	2620	2640	2661	2681	2702	2723	2744	2765
135 .	2787	2800	2830	2852	2874	2896	2218	50117	2964	2987
1,36	3010	3033	3056	3080	310%	3128	3152	3176	3501	3226
137	3251	3276	3301	3327	3352	31/0	3404	3431	3657	3781
138	3511	3538	3565	3593	3621	3649	3677	3705	3734	3763
139	3792	3821	3851	37/11	3911	3043	3971	1007	4013	4064
140	4095	4127	4159	4191	4224	4246	1000	1,322	1,356	4389
141	4623	կեցը	4492	4927	h\$62	4597	4613	4668	4704	4761
142	4777	հՑլե	4/152	4882	4927	1965	5003	SUICE	5081	5120
143	5160	5200	5240	5781	5371	5361	Shali	51.26	5480	5530
144	5573	5616	5660	5703	5747	5792	5837	5887	5927	5973
145	6019	6066	6113	6160	6208	6256	6304	6353	6402	6451
146	6501	6551	6602	6653	6704	6756	6809	6861	6914	6968
147	7022	7076	7131	7186	7241	7297	7354	7410	7464	7525
148	7584	7642	7701	7761	7821	7881	7942	8004	Roge	8128
149	8191	8254	8318	8302	8647	8512	8578	8644	8711	8779

,

.

•

$$S_{t} = S_{m} + F \left(\sum_{i=1}^{n} - S_{m} \right)$$
 [1]

where:

- St is the total loudness of a sound (in sones)
- S is the loudness of the loudest
 band (maximum perceived magnitude)
- F is the factor which varies by level of ${\rm S}_{\rm m}$
- S is the perceived magnitude of frequency band i

n equals 24 for one-third octave band measures equals 8 for octave band measures

4) The total perceived magnitude may be converted into Perceived Level (PLdB) by finding the S_t (in sones) in the body of Table PL-III and relating it to the corresponding band pressure level (in dB) in the column on the extreme left.

For S_t levels *above* 20 dB, Perceived Level may be calculated from this equation:

 $PL = 32 + 9 \log_2 S_+$ [2]

71

2. 1.11 4. 1 2

.
EXAMPLE

An example of the Perceived Level (PL) method using an aircraft flyover noise spectrum is shown in Table PL-IV. Here the one-third octave band levels are tabulated and converted to perceived magnitude (in sones). Computed, $S_m = 174$ sones and F = 0.224, then from equation [1] it follows that:

 $S_{+} = 174 + 0.224 (771.43 - 174)$

= 307.82 sones

A) Then from Table PL-III the S_t is converted to Perceived Level in PLdB of 106.4 PLdB.

B) Or, By equation [2] Perceived Level equals:

 $PL = 32 + 9 \log_2 (307.82)$

= 106.4 PLdB

EQUIPMENT

Tape recorder (necessary for single event)

2) Sound Level Meter (IEC Standard)

- 3) Octave band or 1/3 octave band analyzer
- 4) Digital computer optional

TABLE PL-IV

EXAMPLE OF PL CALCULATIONS FROM ONE-THIRD OCTAVE BAND MEASUREMENTS OF AIRCRAFT FLYOVER

ł ; ı

h

One-Third Octave Band Center Fre- quency Hz	Band Level dB	Perceived Magnitude sones
50	74	1.48
63	76	3.24
80	73	3.85
100	66	2.39
125	77	8.61
160	80	13.30
200	85	22.60
250	83	21.80
315	76	14.10
400	79	20.20
500	79	20.20
630	80	21.80
800	80	21,80
1000	82	25.40
1250	83	27.40
1600	84	34.60
2000	89	59.30
2500	101	174.00
3150	90	87.10
4000	84	54.90
5000	87	69.10
6300	77	32.00
8000	74	25.40
10000	61	6.86

 $\Sigma s = 771.43$

.

 $S_t = 174 + 0.224 (771.43 - 174)$ = 307.82 sones PL = 32 + 9 log₂ (307.82)

= 106.4 PLdB

REFERENCES

- 1. Stevens, S. S., "Perceived Level of Noise by Mark VII and Decibels (E)", J. Acoust. Soc. Am., <u>51</u>, No. 2(2), (February 1972), p. 575-593.
- Peterson, Arnold, and E. E. Gross, Jr., "Handbook of Noise Measurement", General Radio Company, (1972).

. . .

PERCEIVED NOISE LEVEL (PNL) (Lpd)

UNIT

TITLE

PNdB

International

DEFINITION

Perceived Noise Level (PNL) is rating of the noisiness of a sound signal calculated from acoustic measurements. PNL is computed from sound pressure levels measured in octave or one-third octave frequency bands. This rating is most accurate in estimating the perceived noisiness of broadband sounds of similar time duration which do not contain strong discrete frequency components.

STANDARDS

- Society of Automotive Engineers (SAE) Aerospace Recommended Practice ARP 1071 issue June 1972
- International Organization for Standardization, ISO R 507 issue June 1970
- Federal Aviation Administration (FAA) Certification Procedure FAR Part 36

GEOGRAPHICAL USAGE

PURPOSE

¥'

PNL was developed as a measure of the noisiness of sounds of widely differing character. Currently it is used mainly for assessing the disturbance likely to be caused by disconft flyovers.

Preceding page blank

BACKGROUND

PNL is patterned after Loudness Level except that equal noisiness curves are employed instead of equal loudness curves. Discrete frequency or impulsive type sounds are not within the scope of PNL. The numerical value of PNL was intended to represent the sound pressure level of an octave band of noise at 1000 Hz which would be judged to be equally as noisy as the sound to be rated. Equally noisy is intended to mean that in a comparison of sounds one would just as soon have or not have one noise as the other at his home during the day or night. Perceived noise level is measured in units of PNdB. These units are the translation of the subjective Noy scale to a dB-type scale; an increase of 10 PNdB in a sound is equivalent to a doubling of its noy value.

CALCULATION METHOD

Two methods are available for determining PNL. One uses Noy tables and is suitable for hand calculation; the other uses equations and is adapted for computer calculations.

I. PNL FROM NOY TABLES

 The sound pressure level in each onethird (or full) octave band from 50 to 10,000 Hz is converted to a noy value (abbreviated N) by reference to Table I. One finds the proper value of Noys, corresponding to each of the measured levels in the various onethird octave bands, by entering the table at the appropriate band center frequency.

2) These noy values are summed in the following manner:

OCTAVE BANDS

$$\dot{N}_{TOT} = n_{max} + 0.3 \begin{bmatrix} k \\ \Sigma n - n_{max} \end{bmatrix}$$
 [1]

ONE-THIRD OCTAVE BANDS

$$N_{\text{TOT}} = n_{\text{max}} + 0.15 \begin{bmatrix} \kappa \\ \Sigma n - n_{\text{max}} \end{bmatrix}$$
 [2]

where:

n _{max}	is the number of noys in the
man	band having the greatest noy
	value

- Σn is the sum of the noy values in all bands
- k equals 24 for one-third octave
 bands

equals 8 for octave bands

3) Perceived Noise Level (PNL) in PNdB is then calculated from the formula:

$$PNL = 40 + 33.22 \log N_{TOT}$$
 [3]

For N_{TOT} values of 1.0 or greater, the PNL can also be found from Table I by treating the quantity in the 1000 Hz column as the noy value and reading SPL as PNL.

.

- -

TABLE I-NOYS AS A FUNCTION OF SOUND PRESSURE LEVEL

، ،

i						%₀	СТА	VE	BAN	1D (CEN	TER	FR	EQL	JENC	CIES	IN	Hz (c/s)					
92 L	50	6]	10	100	125	160	200	250	315	400	500	633	100	1000	1250	1600	2000	2500	3150 0.10	4100	500.0	6300	60:06	100
1 0.112																	0.10	0,10 0,11 0,12 0,14 0,14	0.11 0.12 0.14 0.15 0.15	0.11 0.11 0.11 0.15	2.13 2.11 2.11 0.14			
	1															0.10 0.11 0.13	0.11 0.13 0.14 0.15 0.15	0.17 0.13 0.22 0.24 0.27	0.17 0.22 0.24 0.27 0.30	0.14 0.21 0.27 0.27 0.19	0.15 0.11 0.21 0.24 0.27	0.10 0.12 0.14 0.15 0.19		
									0.10 0.11	0,10 0,11 0,13 0,14	0.10 0.11 0.13 0.14	0,10 0,11 0,13 0,14	0.10 0.11 3.13 3.14	C.13 D.11 D.13 S.14	0,10 0,11 0,13 0,15 0,17	0.14 0.19 0.19 0.21 0.24	0.21 0.24 0.27 0.33 0.33	0,30 0,33 0,35 0,25 0,41	0.33 0.35 0.35 0.41 0.41	0.13 0.15 0.51 0.51 0.51	0.37 0.33 0.33 0.13 0.41	0.22 0.25 0.30 0.11 0.15	0.10 0.12 0.14	
22222							0.10	0.10 0.11 0.13 0.14	0.13 0.14 0.15 0.13 0.13 0.13	0.15 0.13 0.21 0.24 0.27	0.15 0.21 0.21 0.24 0.27	0.15 0.13 0.24 0.24 0.27	0.16 0.13 0.21 0.21 0.21	0.16 0.23 0.21 0.24 0.27	0.23 0.23 0.25 0.33 0.33	0.27 0.30 0.33 0.35 0.35	0.35 0.47 0.47 0.45	0,45 0,49 0,53 0,57 0,62	0,47 0,53 0,57 0,62 0,67	0.4] 3.53 0.77 0.72 0.57	0.45 0.4 0.51 0.57 0.62	0.19 0.42 0.45 0.55	0.17 0.21 0.25 0.30 0.33	
SWANN N						0.19 0.11 0.13	0.11 0.13 0.14 0.15	0.10 0.11 0.21 0.27	0.27	20.00 00.00 00.00	0.33 3.33 0.33 3.41	0.33	0.30 2.33 2.35 2.35 0.41	0.13 0.13 0.15 0.15	0.1 0.1 0.41 0.45	0.41	0.00	0.67 0.73 0.75 0.65	6,73 0,73 0,42 1,00	9.7] 9.7] 9.17 9.17 9.10	9.67 9.73 9.73 9.72	0.50 0.71 0.71 0.54	0.30 0.37 0.44 0.50	00000
				ىلىد. ئ	0.10 0.11 0.13 0.14 0.14	0,15 0,15 0,15 0,25			0.11	0.14 0.53 0.57 0.02	0.111.N	0.45	0.53	0.44 0.44 0.45 0.45 0.57	3.53		0.34	1,30 1,07 1,15 1,77 1,32	1.07	1,97 1,17 1,21 1,21 1,17 1,41	1.57	0,92	0.55 0.55 0.71 0.77	00000
1.07.3.4	2		0,10	0.11 0.13 0.15 0.15 0.15	0.11 0.21 0.24 0.27 0.27	0.77 0.10 0.11 0.11 0.11	0.1) 0.1) 0.2)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0,57	0.77	3,67 3,73 3,73 3,73 0,92	5.67 5.71 3.74 9.95 0.92	0.17 0.71 0.71 0.71	0.07 0.73 0.73 0.25 0.25	a.7) 6.15 6.12 1.23 1.27	1 97 1 15 1 23 1 32 1 41	1.32	1.41 1.51 1.74 1.76	1.41 1.52 1.74 1.66 1.99	1 1 1 55 1 75 1 75 1 73	1.41 1.52 1.74 1.26	1.32 1.41 1.51 1.02 1.74	0,84 0,42 1,00 1,10 1,21	000000
75273		0,13	0.17 0.14 0.15 0.15 0.17		0.33 0.37 0.41 0.45 0.50	0,45 0,53 0,55 0,55 0,57	0.47 C.14 C.17 0.73	0 71 0 77 0 9 0 70 1 00	0,95 0,52 1,50 1,97 1,45	1.00 1.07 1.15 1.23 1.32	1.02 1.07 1.15 1.23 1.32	1.00 1.15 1.25 1.25	1.00 1.07 1.15 1.2) 1.32	1,00 1,07 1,15 1,23 1,37	1.15 1.23 1.32 1.41	1.22.557	1 74 1 50 1 39 2 14 2 24	1,79 2,14 2,29 2,45 2,03	2.14 2.29 2.45 2.63 2.51	2,14 2,29 2,49 2,61 2,81	1.)) 2.14 2.25 2.45 2.45	1,36 1,19 2,14 2,23 2,45	1.24 1.45 1.63 1.73 1.92	1. 1. 1.
4407	3.17	0.12 0.14 0.16 0.15 0.13	0.12		0.67 0.67 0.74	0.74 0.32 0.50 1.63	0, 11 1.00 1.01 1.17 1.26	1.04 1.10 1.25 1.34 1.45	1,24 1,33 1,42 1,43 1,44	1.41 1.52 1.63 1.74 1.74	1.41 1.62 1.62 1.74 1.47	1.41 1.52 1.62 1.74 1.37	1.41 1.42 1.67 1.74 1.47	1.41 1.52 1.62 1.74 1.37	1.52 1.74 1.37 2.00 2.14	2.14 2.29 2.45 2.51 2.31	2.63 2.61 3.03 3.23	2.31 3.92 3.23 3.44 3.71	1.02 3.23 3.40 3.71 3.97		2.31 3.0.1 3.11 1.41, 3.71	2.53 2.31 3.02 1.21 1.40	2.14 2.24 2.45 2.63 2.61	1.1.2.

- ---- تصاد ومان و ا

TABLE I CONTINUED

\square	· · · · · · · · · · · · · · · · · · ·				5	300	'TAV	ΈĒ	BAN	D C	ENT	ER	FRE	QUI	ENC	IES	IN	Hz (c	:/s)					
57;	5	÷,	33	(22	4:5	సు	200	140	315	433	<u>500</u>	630	100	1203	17:1	¥95	72:9	2500	3150	4923	90	i302	ioo)	12592
20,028	.12 .1- .1 .1	1934 1934 194	.47 .15 .77 .77	.77 .13 3 1.13 1.09	,90 1,20 1,05 1,15 1,25	1.	1-36 1-67 1-51 1-71 1-75	1.56 1.69 1.94 2.09	1.76 1.59 2.0) 2.17 2.33	2.00 2.14 2.31 2.46 2.61	2.00 2.14 2.30 2.45 2.64	2+00 2+14 2+30 2+45 2+64	2-00 2-14 2-30 2-45 2-64	2.00 2.14 2.30 2.45 2.64	2.30 2.45 2.64 2.9) 3.03	3.02 3.23 3.23 3.71 3.71	3.71 3.71 4.55	3+97 4+26 4+56 4+13 5+24	4,2 6 4,56 4,19 5,24 5,61	4.26 4.56 4.13 5.24 5.61]-97 4-26 4-55 4-83 5-24	3+71 3+97 4+26 4+56 4+99	3+02 3+23 3+46 3+71 3+97	2.40 2.63 2.41 3.02 3.23
. 23022		.15	.34 1, 5) 1409 8415 1429	1.19 1.29 1.49 1.51 1.51	1.19	1.73 1.15 2.00 2.15 2.15	2.00 2.15 2.33 2.51 2.71	2.25 2.42 2.61 2.61 3.03	2.50 2.69 2.81 3.10 3.32	2.1)	2.8] 1.0] 1.25 1.41	2-83 3-03 3-25 3-73	2+8) 3+03 3+25 3+41 3+73	2.93 3.03 3.25 3.45 3.77)•25)•41)•11 4•00 4•29	4.25 4.56 4.99 5.24 5.61	4.89 5.24 5.61 6.01 6.14	5.61 6.44 6.20 7.39	6.01 6.44 6.90 7.39 7.92	6.01 6.44 6.90 7.19 7.72	4-50 7-39	5-24 5-61 6-01 6-44	4.25 4.36 4.89 5.24 5.61	1.45 1.71 1.77 4.25 4.55
94444	17	1.00 1.10 1.21 1.32 1.45		1.41 1.97 2.15 2.74 2.51	2.01 2.25 2.15 2.65 2.51	2 - 5 1 2 - 71 2 - 97 3 - 16 3 - 41	2-9) 3-11 3-41 3-69 3-99	3-26 3-51 3-71 4-06 4-35),57),5] 4,11 4,41 4,7]	4.00 4.29 4.53 4.92 5-21	4+00 4+39 4+92 5+21	4.00 4.29 4.92 5.29	4-00 4-29 4-59 5-23	4.00 4.23 4.59 4.92 5.25	4432	6.01 6.41 6.90 7.33 7.92	6.90 7.19 7.92 9.39 9.39	7.92 9.49 9.03 9.74 10.4	9.49 9.09 9.34 10.4 11.2	9+49 9+09 9+74 10+4 11+2	7.92 9.49 9.07 9.74 10.4	7-39 7-92 8-49 9-09 9-74	6-01 6-44 6-90 7-35 7-92	4.19 5.24 5.51 6.41
5255	1.11 1.22 1.25 1.49	1.40	2.15 2.34 3.51 3.61 3.01	2.77	3-12 3-19 3-69 4-33	3.63 3.31 4.30 4.64 5.01	4. 30 5.01 5.41 5.41	4-71 5-07 5-46 5-13 6-33	5.03 5.45 5.27 6.73	6.50 6.96 7.46	4.06 6.50 6.96 7.45	3.66 6.50 6.50 7.46	5.66 6.50 6.96 7.46	5.66 6.50 6.96 7.45	6.90 6.95 7.45 8.00 8.57	9.49 9.09 9.74 10.4 11.2	3.74 10.4 11.2 12.0 12.1	11.2 12.0 12.9 13.9 13.9	12.0 12.8 13.5 14.7 15.8	12.0 12-1 13.8 14.7 15-5	11.2 12.0 12.5 13.5 14.7	10-4 11-2 12-0 12-1 13-1	9-49 9-07 9-74 10-4 11-2	6.90 7.39 7.92 9.69 9.09
85252	1.42 2.03 2.2) 2.46 2.72	2.55	1.24	4.23 4.63 5.01 5.71	4.67 5.09 5.52 5.99	7 • 41 6 • 71 6 • 11 7 • 36	6-31 6-31 7-36 7-34	6 81 7 33 7 90 9 15 9 15	7.23 7.75 4.32 9.93 9.53	9.00 9.13 9.95 10.6	9.00 9.19 9.19 19.55	1.00 1.57 9.13 9.15 10.6	3.00 9.19 9.05 10.6	8.00 8.57 9.19 9.35 10.6	9.19 9.15 10.6 11.1 12.1	12.3 17.1 13.5 14.7 15.1	1],9 14.7 15.9 16.9 19.1	15.8 16.9 18.1 19.4 20.9	18.9 18.1 19.4 20.9 22-3	16.9 14.1 19.4 20.4 22.)	19.8 16.9 18.1 19.4 20.9	14-7	12.9 12.9 13.9 14.7 15.8	10.4 11.2 12.0 12.4
11.14	3.01 3.12 3.67 4.06 4.49	4.06	5-01 5-94 6-45 7-03	6. <u>-5</u> 7.07 7.65 9.07	7.05 7.45 9.00 9.76	7.94 9.19 9.19	9.19 9.63 10.6 11.] 12.1	9.35 10.6 11.3 12.1 13.0	10.) 11.0 11.5 12.7 13.6	11-] 12-1 13-0 13-9 14-7	11.) 12.1 13.0 13.9 14.9	11.] 12.1 13.0 13.9 14.9	11.) 12.1 1).0 1].9 14.9	11.3 12.1 13.0 13.9 14.9	t].0 1].9 14.9 16.0 \$7.1	16.9 19.1 19.4 20.1 22.J	19.4 20.5 22.3 23.9 25.6	22.) 23.6 27.1 29.4	2)-9 25-5 27-4 29-4 31-5	23.9 25.6 27.4 29.4 31.5	22.2 23.9 25.6 27.4 29.4	20.9 22.3 23.9 25.6 27.4	16.9 11.1 17.4 20.1	13.9 14.1 15.9 15.1
40 61 42 87	4-96 5-66 6-70 7-41	4-41 7-11 7-11 7-11 7-11 9-41	7-66 4.33 9.07 9.17 10.7	9.45 10.5 11.] 12.1 13.0	10.6 11.] 12.1 1).0 1).9	t1.) 12.1 13.0 13.9 14.9	13.0 13.9 14.9 16.0 17.1	13.9 14.9 16.0 17.1 18.4	14-6 15-7 16-9 11-1 19-4	16.0 17-1 10-4 19.7 21-1	16-0 17-1 19-4 19-7 21-1	16.0 17-7 11-4 19-7 21-1	16.0 17-1 18-4 19-7 21-1	16.0 17.1 19.7 21.1	11.4 19.7 21.1 22.6 24.3	2), 9 25+6 29+4 29+4 31+5	27+4 23+4 31+5 33+7 36+1);•5))•7)(•1)1•7 41•5	33.7 36.1 31.7 41.5 44.4	77.7 74.7 44.4)).7)(.1)5.7 41.5	29.4	23.9 27.4 27.4 27.4	19.4 20.9 22.3 23.9 23.6
22222	8.19 9.05 10.0 11.1 12.2	10.3 11.3 12.1 13.0 13.9	11.7 12.7 13.9 14.9 16.0	1)+9 14-9 16-0 17-1 10-4	14.9 16.0 17.1 11.4 19.7	16-0 17-1 19-7 21-1	11.4 19.7 21.1 22.6 24.3	19-7 21-1 22-6 24-1 26-0	20+8 22+4 24-0 25+5 27+7	22.6 24.1 26.0 27.9 27.9	22.4 24.7 25.0 27.9 29.9	22.6 24.3 26.0 27.9 29.9	22.6 24.7 26.0 27.9 29.9	22+6 24+3 26+3 21+9 29+9	26.0 27.9 29.9 32.0 34.3	3).7 36 1 35.7 41 5 44-4]4.7 41.5 44.4 47.6 51.0	44. 9 47.4 51.0 54.7 54.8	47-6 51-0 54-7 51-6	47.6	47-6 51-0 51-7	41-5 44-4 47-6 51-0 54-7),,,,),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
87857	13-5 14-9 16-0 17-1	14-9 16-0 17-1 18-4 19-7	17+1 14+4 19+7 21+1 22+6	19.7 21.1 24.3 26.0	21.1 22.6 24.1 26.0 27.7	22.6 24.3 26.0 27.9 29.9	26.0 27.9 29.9 32.0 34.3	27.9 29.9 32.0 34.3 36.0	29.7)1.5]4.2]6.7]9.4	32.0 34.3 36.9 39.4 42.2	12.0 14.1 16.8 19.4 42.2	32.0 34.3 36.9 39.4 42.2	12.0 14.1 16.4 19.4 6	32.0 34.3 36.1 39.4 42.2	36.9 39.4 43.2 45.3 41.5	47-6 51-0 54-7 52-7	54.7 52.7 61.2 72.0	62.7		67.2 72.0 77.2 77.2 77.2	62.7 67.2 72.0 77.2 72.7	47.6 62.7 67.2 72.0 77.2	47.6 51-0 54.7 11-6 62.7	11.5 41.5 47.6 51.0
18222	19.7 21.1 22.6 24.3 26.0	21.1 22.6 24.3 26.0 21.7	24.] 26.0 27.9 29.9 32.0	27.9 29.9 12.0 11.1 16.1	29.9]2.0]4.1]6.8]9.4]2.0]4.)]6.5]9.4 42.2	76.7)9-4 42-2 45-1 41-5)), 4 45, 1 41, 5 52,0	46435 46435 55	45-1 41-5 52-0 55-7 59-7	5.7 47.5 52.0 55.7 59.7	41-5 52-0 55-7 59-7	45+3 43+5 52+0 55+7 59+7	6153 4133 555 55 55	52.0 55.7 59.7 64.0 61.6	61.2 72.0 11.2 92.7 91.6	77+2 82+7 89+6 94+9 102	43.6 94.7 102 107 117	94-9 102 109 117 125	54.9 102 10) 117 125	94.9 102 109 117	42-7 97-8 94-9 102 109	67-2 12-0 11-3 82-7 81-6	54.7 5227 12-0

.

08

TABLE I CONTINUED

				1	300		/E 8	BAN	D C	ENT	ER	FR	EQU	ENC	IES	IN	Hz (a	:/s)						
.r:	•2	а	••		175	10 :	200	250	315	40Q	500	510	tsa.	1000	1	100	2015	:500	3154	40::	fcc6	51.85	3510	1:00:
100 101 103 103	27.1 27.1 12.4 34.1 35.1	27-7 12-0 11-1 16-1 17-4	1457245	14477	45.7	41-3 52-3 55-7	52.9 55.7 55.7 64.0 67.6	55+7 53+7 64-0 61+6 73+5	59-7 64-7 61-5 7)-5 71-7	64.0 61.5 71.1 74.4	64.0 65.6 71.5 74.1	64.0 61.6 71.5 74.1	64-0 61-6 71-5 72-1 54-4	\$4.0 61.6 73.5 71.1 14.4	73.5 15.1 31.5 31.5	94 - 9 102 10 7 11 7 12 5	107 117 125 134	125 134 144 154 165	134 134 161	131 144 151 177	125	117 125 134 144 154	94-9 102 157 177 125	12.7 12.7 13.6 14.7 102
101 101 101 101	10000	11111	42.5	****	57.7 54.3 51.5 73.5	6110 6110 7115 7115	77-5 78-5 8-4-4 70-5 97-0	79.5 94.4 90.5 97.3 104	30+5 97+3 13 4 111	90.5 97.0 101 111 115	97.9 97.9 134 111)0.5 97.3 134 111 117	90.5 97.3 104 111 117	90-5 57-3 10-1 111 -1)	104 111 121 121	1) 144 154 154 155	15 1 155 172 153 203	177 199 203 217 233	143 203 217 217 217	11) 20) 217 23) 24)	177 157 201 21 231 231	165 177 203 217	134 144 154 155	107 117 125 134 141
	1111	17.7 44.0 19.5 79.5 79.5	69.6 73.5 75.9 94.4 79.5	71.1 14.4 21.5 27.0 174	14.4 30.5 97.0 13.4 111	90-5 97-3 104 111 119	104 111 119 121 121	111 119 121 111 111 147	119 124 137 147	127	137	127	125 137 147 151 169	121 137 14] 151 16]	147 159 159 171	117 201 217 217 217 217 247	211	249 267 296 307 329	267 246 307 329 352		1121	23) 24] 26] 26] 30]	119 201 211 211 241	154 165 177 199 203
	744	14.1 50.5 57.0 104 111	97.7 104 111 112 121	111 117 123 137 147	111111111111111111111111111111111111111	121 137 147 159	193 163 161 134	151 169 134 201	167 191 174 204 223	111 174 201 223 233	194 201 22) 2)9	194 221 221	194 201 221 239	191 194 201 221 239	201 221 239 256 274	237 235 307 323 323 323	337 323 352 352 352 352)52))7 404 4))	111 411 411 411	377 494 437 454 497		27 52 52 52 52 52 52 52 52 52 52 52 52 52	247 215 207 229 252	1777474
12222		127	127	151 167 111 134 291	169 151 194 205 223	131 205 223 237	204 22) 2)9 256 274	223 237 256 274 294	237 236 274 294 294	235 293 215 315	256 274 294 215 215	256 274 294 211 233	256 274 294 315 333	256 274 294 315 335	294 115 115 162 191)77 404 433 464 437	924 67 511	497 515 511 511 655	177 577 655 702	571 615 702	\$33 \$33 \$11 \$55	497 533 571 611	111 404 411 411	911617 9
122212	151 169 151 194 205	167 191 201 223	194 201 221 231 231	22) 2)9 2)6 2)4 2)4	237 255 274 294 215	254 274 294 215 235	294 315 338 362 301	315 334 362 385 416)]4)62)14 416 416	362 313 416 446 474	162 194 416 445 475	352 399 416 425 479	362 393 416 426 478	362 391 416 420 475	415 431 471 512 547	533 531 611 655 702	611 655 702 752 636	702 152 161 1925	965 965 925 931	755 561 925 991	702 752 766) 925	67P2243	511152	
55855	223 233 256 274 294	235 256 274 274 274 274	274 274 315 311 363	315 334 362 341 416)))))))))) 415 449	362 353 415 445 477	416 426 475 512 549	415 471 512 54) 543	472 512 513 513 513	512 547 515 675	512 547 511 630 676	512 547 539 630 676	542 547 630 676	512 547 551 630 676	677 675 775	141	863 925 911 1062 1137	991 1052 1137 1213 1306	1062 1117 1217 1306 1306	1052 1117 1217 1365 137	971 1062 1117 1213 1306	925 921 1052 1117 1213	101151	152223
1111))52)52)11)))42)37 416 415	344 416 471 472	446 471 512 547	471 512 543 511 630	512 547 515 630 676	6 16 72 4 776	632 675 724 716 632	676 724 776 132 191	724 775 172 172 172 172	724 776 132 191 955	724 775 932 991 955	724 776 832 991 955	724 776 912 931 955	832 931 535 1024 1037	1052 1117 1219 1335 1335	1213 1305 1113 1423	())) (v)) (636 ()21 (144	1497 1605 1721 1944 1975	1433 1625 1721 1974 1975	t 577 1 407 16 36 1721 19 44	+ 306 1 3 39 1 439 1 606 1 721	1062 1137 1219 1326 1335	14) 725 725 725 725 725 725 725 725 725 725
10111	446 471 517 547	572 512 517 517 610	141 551 616 724	639 675 721 316 632	676 734 776 532 891	724 716 812 811 955	832 891 955 1024 1034	891 955 1024 1031 1126	955 1024 1031 1125 1291	1024 1091 1176 1261 1351	1024 1021 1125 1251 1251	102 1 10 31 11 16 125 1 1 35 1	1024 1031 1176 1261 1351	1034 1091 1176 1261 1354	tt 76 1251 1351 1441 1552	1479 1625 1721 1144 1975	1721 1914 1975	1975			1975	1975	14224	19776
190040	610 676 724 776 432	676 72 776 73 871	776 532 831 955 1024	931 951 1024 1031 1175	955 1024 1091 1176 1261	102 1 1033 1176 1261 1251	1176 1251 1351 1441 1552	1261 1351 1441 1552 1664		1445 1552 166 1713 1911	1413 1552 1954 1713 1713	1443 155 1664 1711 1211	1441 1552 1664 1733 1911	1 445 1552 1664 171) 1911	1654 171) 1511 2041									1721
150	191	955	1024	1251	1351	1447	1664	1742	1911	20 47	20 6	20 41	2045	2041										

¢

II. PNL FROM EQUATIONS

The procedure for determining PNL with equations is the same as that used with noy tables except noy values are determined by equation as follows:

The value N, in noys, given in Table I for a particular frequency band is related to the band sound pressure level, L, by the equation:

-

$$N = A \begin{bmatrix} M_{j} (L-L_{k}) \\ 10 \end{bmatrix}$$
 [4]

For:

$$N \leq 0.1$$

Where:

For
$$L_1 \leq L \leq L_2$$

N=0.1 (10 $M_1 (L-L_1)$) 0.1 $\leq N \leq 0.3$

Band Center Frequency (Hz)	Lı	м ₁	^L 2	M2	L3	м3	L _c	м ₄	L ₄	
50	49	0.079520	55	0.058098	64	0.043478	91.01	0.030103	52	
63	44	0.068160	51	0.058098	60	0.040570	85.88	0.030103	51	
80	39	0.068160	46	0.052288	56	0.036831	87.32	0.030103	49	L
100	34	0.059640	42	0.047534	53	0.036831	79.85	0.030103	47	
125	30	0.053013	39	0.043573	51	0.035336	79.76	0.030103	46	l I
160	27	0,053013	36	0.043573	48	0.033333	75.96	0.030103	45	
200	24	0.053013	33	0.040221	46	0.033333	73.96	0.030103	43	
250	21	0.053013	30	0.037349	44	0.032051	74.91	0.030103	42	
315	18	0.053013	27	0.034859	42	0.030675	94.63	0.030103	41	l
400	16	0.053013	25	0.034859	40	0.030103	100.00	0.030103	40	1
500	16	0.053013	25	0.034859	40	0.030103	100.00	0.030103	40	
630	16	0.053013	25	0.034859	40	0.030103	100.00	0.030103	40	
800	16	0.053013	25	0.034859	40	0.030103	100.00	0.030103	40	1
1000	16	0.053013	25	0.034859	40	0.030103	100.00	0.030103	40	
1250	15	0.059540	23	0.034859	38	0.030103	100,00	0.030103	38	
1600	12	0.053013	21	0.040221	34	0.029960	100.00	0.029950	34	ł
2000	9	0.053013	18	0.037349	32	0.029960	100.00	0.029960	32	
2500	5	0.047712	15	0.034859	30	0.029960	100.00	0.029960	30	
3150	4	0.047712	14	0.034859	29	0.029960	100,00	0.029960	<u>5</u> 9	ļ
4000	5	0.053013	14	0.034859	29	0.029960	100,00	0.029960	29	,
5000	6	0.053013	15	0.034859	30	0.029960	100.00	0.029960	30	
6300	10	0.068160	17	0.037349	31	0.029960	100.00	0.029960	31	
8000	17	0.079520	23	0.037349	37	0.042285	44.29	0.029960	34	
10,000	21	0.0596401	29	0.043573	41	0.042285	50.72	0.029960	37	

For
$$L_2 \leq L \leq L_3$$

N=10 $M_2 (L-L_3)$ 0.3 $\leq N \leq 1.0$

For $L_3 \leq L < L_c$ $M_3 (L-L_3)$ N=10 1.0 $\leq N_1$ $L \leq 150$

For $L_{c} \leq L \leq 150$ M₄ (L-L₄) N=10

Note that for frequency bands having center frequencies from 400 to 6300 Hz inclusive, $L_3 = L_4$ and $M_3 = M_4$ (i.e., one set of values of L_k and M_j suffice to define noy values for $N \leq 1$ and $L \leq 150$). The values of M_j and L_k are tabulated in Table II.

EXAMPLE

PNL from noy tables

An example of PNL calculations using an aircraft flyover noise spectrum is shown in Table PNL-III. Here the one-third octave band levels are tabulated and converted to noy values. Using equation [2] the total noy value is determined by:

 $N_{\text{TOT}} = 1.34 + 0.15 (604.63 - 1.34)$

≓ 204.59

Then the total noy value is converted to Perceived Noise Level in PNdB:

 $PNL = 40 + 10 \log (204.59)$

= 116.8 PNdB

TABLE PNL-III

EXAMPLE OF PNL CALCULATIONS FROM ONE-THIRD OCTAVE BAND FREQUENCY FOR AIRCRAFT FLYOVER

•

-

٠,

د ب: •

.) .4

••

•

--

One-Third		·			
Octave Band	Band		One-Third Octave Band	Band	}
Center Fre-	Level		Center Fre-	Level	l í
quency Hz	<u>d</u> B	Noy	quency liz	dB	Noy
50 63 80 100 125 160 200 250 315 400 500 630 800	76 73 66 77 80 85 83 76 79 79 79 80 80	4.46 4.23 3.01 8.29 11.30 18.40 17.10 11.00 14.90 14.90 16.00	1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000	82 83 84 89 101 90 84 87 77 74 61	18.40 22.60 31.50 51.00 134.00 67.20 44.40 51.00 23.90 15.80 5.24
000	80	10.00		TOTAL	604.63
EQUIPMENT		2) Soun 3) Octa	N _{TOT} = 134 = 204. PNL = 40 + = 116. e recorder (neck d level meter twe or 1/3 octav tal computer op	59 10 log (2 8 PNdB essary for (IEC Stand Ve band an	04.59) single events ard)
REFERENCES		Aer ARP 2. Int diz 3. Fed	iety of Automot ospace Recommer 1071 issue Jur ernational Orga ation, ISO R 50 eral Aviation Proc	nded Pract ne 1972. Inization 17 issue J Idministra	ice for Standar- une 1970. tion (FAA)

85

t

TONE CORRECTED PERCEIVED NOISE LEVEL (PNLT)

UNIT

TITLE

DEFINITION

Tone corrected Perceived Noise Level is Perceived Noise Level (PNL) corrected for those one-third octave bands which contain discrete frequency components. Perceived noisiness of sounds which are of equal duration but which have pure tone characteristics can be compared using PNLT.

STANDARDS

- Society of Automotive Engineers (SAE) Aerospace Recommended Practice ARP 1071 issue June 1972
- International Organization for Standardization, ISO R 507 issue June 1970
- 3) Federal Aviation Administration (FAA) Certification Procedure FAR Part 36

GEOGRAPHICAL USAGE International

PNdB

PURPOSE

PNLT was developed to aid in prediction of perceived noisiness for aircraft flyovers or vehicle noise which contain pure tones, or have pronounced irregularities in their spectrum.

î

BACKGROUND

PNLT was developed in order to assess the added noisiness of discrete frequency components. An adjustment feature was added to PNL that increased its value when tones were present in the noise signal. The various methods used to compute PNLT all apply the tone correction to the perceived noise level in PNdB units. The method adopted by the FAA calculates the PNL of a sound and then adds a tone correction based on the tonal frequency and the amount that the tone exceeds the noise in the adjacent one-third octave bands.

Another method that was developed before the FAA method but is not in widespread use at this time, adds the tone correction to the sound pressure level of the one-third octave band containing the prominent tone prior to the perceived noise level calculation. This method takes into consideration multiple tones rather than just the largest tone.

CALCULATION METHOD In the FAA method the PNL of a sound is calculated in the usual manner. The band spectra of the sound are examined to determine the presence of any pure tone components, which are specified in terms of a tone-to-background noise ratio. If this ratio exceeds a certain level, a correction, in dB, is added to the PNL for the sound. The magnitudes of the correction are a function of the tone-to-noise ratio and frequency of tone. Only one tone correction is added to the PNL of that sound, even though more than one pure-tone might be present.

The following is a step by step procedure for calculating PNLT:

Step 1

Compute D_{ji} where:

- i = 1/3 octave band number, and j= i+1.
 - i = 1 corresponds to the band with center frequency of 80 Hz
- L_i = Band sound pressure of the ith frequency band.

Step 2

Encircle those values of D_{ji} where:

 $|D_{ji} - D_{j-1,i-1}| > 5 dB$

Step 3

A. If the encircled D_{ji} is positive and algebraically greater than $D_{j-1,i-1}$ encircle L_{j} .

B. If the encircled D_{ji} is zero or negative and $D_{j-1,i-1}$ is positive, encircle L_i .

Step 4

A. For all non-encircled L_{i} , set $L_{i}' = L_{i}$

B. For encircled values L_i set L'_i equal to the arithmetic average of L_{i-1} and L_{i+1} .* If the SPL value in the highest frequency band is encircled, set $L'_{22} = L_{21} + D_{21,20}$.

Step 5

Compute D_{ji} where D'_{ji} is the arithmetic difference between the levels L'_i in the frequency bands j and i.

Step 6

Compute \overline{D}_{ji} as the arithmetic average of $D'_{j-1,i-1}$, D'_{ji} and $D'_{j+1,i+1}$. Where i = 1, set $D'_{j-1,i-1}$ equal to D'_{ji} . Where i = 21, set $D'_{j+1,i+1}$ equal to D'_{ji}

Step 7

Set $\overline{L_i}$ equal to L_i' . Determine all other values of $\overline{L_j}$ by adding \overline{D}_{ji} to $\overline{L_i}$.

1.1.1.1

Step 8

Determine F, where:

$$F_i = L_i - \overline{L}_i$$

*Recent experience has shown that this method of averaging the sound pressure levels of adjacent bands will result in too low a discrete frequency correction when the presence of a tone (or tores) influences the sound pressure levels of two adjacent bands. The procedure used in the study averaged the sound pressure levels of the two nearest *noncircled* adjacent bands rather than those of the two directly adjacent bands.

Step 9

Determine the discrete frequency correction, C, from the following equations:

C = O C = F/3 3 C = 6.7 2	3 <u><</u> F<20)	For one-third octave bands between 500 and 5000 Hz,
C = 0 C = F/6 C = 3.3	3 <u><</u> F<20)	For all other one-third octave bands in the frequency range 100 Hz up to 10,000 Hz.

Step 10

The maximum value of C determined in Step 9 defines the discrete frequency correction which should be added to the value for PNL to obtain PNLT.

EXAMPLE

1

オイストレードの利用した。19月1日に、19月1日日に、19月1日日に、19月1日に、

.

1.

;;;;;

An example of PNLT calculation for an aircraft flyover noise with a PNL of 104.6 PNdB is illustrated in Table PNLT-I. The numbers heading each column correspond to the step numbers in the calculation procedure. Tone correction is added to PNL which is calculated in the normal manner to determine PNLT. Thus PNLT = 104.6 + 2 = 106.6 PNdB.

EQUIPMENT

REFERENCES

- Tape recorder (necessary for single events)
- 2) Sound Level Meter (IEC Standard)
- 3) Octave or 1/3 octave band analyzer
- 4) Digital computer optional
- Society of Automotive Engineers (SAE) Aerospace Recommended Practice ARP 1071 issue June 1972.
- International Organization for Standardization, ISO R 507 issue June 1970.
- Federal Aviation Administration (FAA) Certification Procedure FAR Part 36.

TABLE PNLT-I

· ILLUSTRATION OF THE USE OF FAA TONE CORRECTION

Step	·	1 2	1.1.0		1				
<u>}</u>	╶┼┉═╌╾╍╍╍╍	3	1+2	4	5	6	7	8	9
Band 1	fi	L ₁	Dji	L'i	Dji	₽,ji	Ē	Fi	C
1	80	70	- 8	70	- 8	-2 1/3	70	-	
2	100	62		62			67 2/3	-	
3.	125	(70)	<u>(† 8</u>)	(71)	+ 9	+3 1/3	71	-	
4	160	80	+10	80	+ 9	+6 2/3	77 2/3	2 1/3	
5	200	82	-(+_2)	82	+ 2	+2 2/3	80 1/3	1 2/3	
6	250	(83)	$\overline{\mathbf{x}}$	(79)	- 3	-1 1/3	79	4	2/3
7	315	76		76	- 3	-1 1/3	77 2/3	-	1
8	400	(80)	-5)	(78)	+ 2	+ 1/3	78	2	1
9	500	80		80	+ 2	+1	79	1	
10	630	79	- 1	79		0	79	-	
11	800	78	- 1	78	- 1	0	79	-	
12	1000	80	+ 2	80	+ 2	- 1/3	78 2/3	1 1/3	
13	1250	78	- 2	78	- 2	- 2/3	78	-	
. 1 4	1600	76	- 2	76	- 2	- 1/3	77 2/3	-	
15	2000	79	+ 3	79	+ 3	+ 1/3	78	1	
16	2500	85	+ 6	(79)		+1	79	6	2
17	3150	79	5	79	0	- 1/3	78 2/3	1/3	
18	4000	78		78	····	-2 2/3	76	2	}
19	5000	71 -	54	71		-6 1/3	69 2/2	1 1/3	
20	6300	60 -	-11	60	-11	-8	61 2/3	-	
21	8000	54		54	- 6	-8 2/3	53	1	
22	10000	45	≤ 1	45	- 9	-8	45		
	rding to	ster	p 10,	the d	iscrete	freque	nay corr	ection	is 2.
Thus			104			_			

PROCEDURE DESCRIBED IN STEPS 1 THROUGH 10

92

PNLT = 104.6 + 2 = 106.2 PNdB

EFFECTIVE PERCEIVED NOISE LEVEL (EPNL) (L_{FPN})

UNIT

1

TITLE

EPNdB (PNdB)

DEFINITION

Effective Perceived Noise Level is a single number measure of complex aircraft flyover noise which approximates laboratory annoyance responses. It is derived from PNL, but it includes correction terms for the duration of an aircraft flyover and for the presence of audible pure tones or discrete frequencies (such as the whine of a jet aircraft) in the noise signal.

STANDARDS

- Society of Automotive Engineers (SAE) Aerospace Recommended Practice ARP 1071 issue June 1972
- International Organization for Standardization, ISO R 507 issue June 1970
- 3) Federal Aviation Administration (FAA) Certification Procedure FAR Part 36

GEOGRAPHICAL USAGE International

PURPOSE

Effective Perceived Noise Level (EPNL) takes into account both the duration and the tonal components of the spectra for varying types of non-sonic boom aircraft flyover signals. This measure is used by the Federal Aviation Administration in aircraft certification.

Preceding page blank

BACKGROUND

Although there are several methods of determining EPNL all include both duration and tone corrections (References). The tone correction factor increases the magnitude of PNL to account for the increased noisiness of audible discrete frequency components such as are found in aircraft flyover noise. The duration correction increases the magnitude of PNL in an attempt to account for the increased noisiness of sounds of long versus short duration. Effective Perceived Noise Level, in EPNdB units, is usually obtained by first determining a time sequence of tone-corrected Perceived Noise Levels (PNLT) from onethird octave band noise spectra. EPNL is then determined by summing (on an energy basis) the tone corrected EPNL in 0.5second time segments.

CALCULATION METHOD

Effective Perceived Noise Level (EPNL) expressed in EPNdB is determined as follows:

1) The sound pressure level (SPL) for each of the 24 one-third octave bands having a center frequency from 50 to 10,000 Hz is measured for a continuous sequence of 0.5 second time intervals (i in the subscript designates the sequence number of the .5 second interval) throughout the time period of the flyover noise.

2) The Perceived Noise Level (PNL) is computed for every one-third octave band calculated at each 0.5 second (or i^{th}) time segment defined within the duration interval (see PNL p. 50).

3) Audible discrete frequencies are detected and tone-corrections are determined for these frequencies (see PNLT p. 86).

4) PNLT (tone corrected Perceived Noise Level) is calculated by adding tonecorrections (T) determined in Step 3 to the perceived noise level at .5 second (or ith) interval (Step 2). Thus:

$$PNLT_{i} = PNL_{i} + T_{i}$$
 [1]

5) The computation formula for Effective Perceived Noise Level, in EPNdB is:

$$EPNL = 10 \log \begin{bmatrix} d \\ \Sigma \text{ antilog } (\frac{PNLT_i}{10}) \end{bmatrix} - 13 \quad [2]$$

Remember that PNLT is computed from onethird octave band sound pressure levels determined at discrete .5 second (or ith) intervals. The summation process noted in the formula extends over the duration (d) of the noise which is defined as the seconds between the first and last values of tonecorrected PNL which are a minimum of 10 dB down from maximum PNLT (see PNLT p. 86).

EXAMPLE Table EPNL-I shows an example of the EPNL calculation procedure, given PNLT as a function of time, for an aircraft flyover. $EPNL = 10 \log (167768.34 \times 10^6) - 13$ = 99.2 EPNdB EQUIPMENT Tape recorder (necessary for single 1) events) 2) Sound Level Meter (IEC Standard) One-third octave band real time analyzer 3) 4) Or, One-third octave band analyzer plus graphic level recorder REFERENCES 1. a) Society of Automotive Engineers (SAE) Aerospace Recommended Practice ARP 1071 issue June 1972. b) International Organization for Standardization, ISO R 507 issue June 1970. c) Federal Aviation Administration (FAA) Certification Procedure FAR Part 36. 2. Pearsons, K. S., and R. L. Bennett, "The Effects of Temporal and Spectral Combinations on the Judged Noisiness of Aircraft Sounds", DOT-FAA Office of Noise Abatement, BBN No. FAA-NO-69-3, (June 1969). 3. U. S. Environmental Protection Agency, "Fundamentals of Noise: Measurement, Rating Schemes, and Standards," (December 31, 1971) NTID 300.15.

1000

......

1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 - 1444 -

5

. . . .

Time (Sec)	PNLT	Antilog $(\frac{PNLT}{10})$
6.0	82.8	
6.5	82.9	
7.0	83.1	
7.5	84.9	
8.0	86.9	
8.5	87.6	
9.0	87.7	
9.5	89.6	
10.0	88.9	
10.5	90.3	
11.0	93.0	1995.26 x 10 ⁶
11.5	94.8	3019,95 "
12.0	97.3	5370.32 "
12.5	100.8	12022.64 "
13.0	101.9	15488.17 "
13.5	103.0	19952.62 "
14.0	103.2	20892.96 "
14.5	103.8	23988.32 "
15.0	102.7	18620.87 "
15.5	101.5	14125.3B "
16.0	100.2	10471.29 "
16.5	9B.2	6606.93 "
17.0	97.4	5495.41 "
17.5	96.4	4365.16 "
18.0	95.2	3311.31 "
18.5	93.1	2041.74 "
19.0	92.9	
19.5	91.6	
20.0	90.3	
	Total:	167768.34 x 10 ⁶
EPNL = 10) Log (16776	58.34 x 10 ⁶) - 13
EPNL = 99	.2 PNdB	

TABLE EPNL-I EXAMPLE OF EPNL CALCULATION FOR AIRCRAFT FLYOVER NOISE

- - -

г

TITLE	EQUIVALENT SOUND LEVEL (L _{eq}) (SLAQ)
UNIT	dB
DEFINITION	Equivalent Sound Level (L _{eq}) is the average (i.e., the average on an energy basis) noise level (usually A-level) integrated over some specified amount of time.
STANDARDS	(None)
GEOGRAPHICAL USAGE	International
PURPOSE	The purpose of L _{eq} is to provide a single number measure of time-varying noise for a predetermined time period.

Preceding page blank

100

BACKGROUND

ĩ

The early noise assessment measures estimated the level of a noise for an instant in time. Some of the measurement schemes that were developed later allowed for ratings of fluctuating sounds over a longer period of time. One of these measures was an equivalent sound pressure level. Equivalent signifies that the numerical value of the fluctuating sound is equivalent in level to a steady state sound with the same amount of total energy. The specified time integration period may be for varying durations (i.e., 2 minutes, 2 hours or 24 hours, etc.). L_{eq} differs from Hourly Noise Level (HNL) in that no provision is made for a minimum sampling threshold. If not stipulated, the level of the noise is taken in A-level, although other types of weighted frequency spectra could be employed (i.e., B-level, D-level, C-level).

CALCULATION METHOD

L_{eq} can be determined by two different methods.

1) CONTINUOUS INTEGRATION

For continuous time integration of Aweighted sound level for a specified time period, the formula is:

$L_{eq} = 10 \log \frac{o^{\int} antilog (AL)[t]/10}{T} $ [1]
where:
AL[t] is instantaneous A-level at time t
dt is At as it approaches 0
T is the specified time period over which the time integration process takes place
NOTE: Equivalent Sound Level (L _{eq}) is time averaged <i>exposure level</i> (l/T).
2) TEMPORAL SAMPLING
For discrete sampling of A-weighted
sound level for a specified time
period, the formula is:
$L_{eq} = 10 \log \sum_{\substack{i=1\\ n}}^{n} (AL_i/10) $ [2]
where:
AL, is the instantaneous A-level i for sample i
n is the number of samples of AL in a specified time period
The following example illustrates one method of determining L _{eq} . Normally more than three samples would be taken within a time period.

EXAMPLE

A) TEMPORAL SAMPLING(for a 45 minute time period)

Given:

 $AL_1 \approx 67 \text{ dB}$ $AL_2 \approx 74 \text{ dB}$ $AL_3 \approx 76 \text{ dB}$

Then:

$$L_{eq} = 10 \log \left[\frac{\text{antilog } \frac{67}{10} + \text{antilog } \frac{74}{10} + \text{antilog } \frac{76}{10}}{3} \right]$$

$$= 10 \log \left[\frac{(5.01 + 25.12 + 39.81) \times 10^{6}}{3} \right]$$

= 73.7 dB

EQUIPMENT

i

· 3、 4.3 我们们都想想了那些都是能够能够的。""你们们们们们们们们们们们们们们们们们们们的吗?"

1. Continuous Sampling:

- a) Special monitoring equipment capable of integrating sound levels for long periods of time
- 2. Temporal Sampling:
 - a) Sound Level Meter (IEC Standards)
 - b) Tape recorder

REFERENCES

1: Von Gierke, Henning, "Impact Characterization of Noise Including Implications of Identifying and Achieving Levels of Cumulative Noise Exposure", EPA Aircraft/ Airport Noise Report Study, June, 1973, Task Group 3.

TITLE	SINGLE EVENT NOISE EXPOSURE LEVEL (SENEL) ·(SOUND EXPOSURE LEVEL) (SEL)
UNIT	dB
DEFINITION	SENEL is time integrated A-level of a single aircraft flyover (which exceeds a threshold noise level) which is expressed by the level of an equivalent 1 second duration reference signal.
STANDARDS	 California Department of Aeronautics, "Noise Standards," California Admin- istrative Code, Chapter 9, Title 4, (Register 70, No. 48, November 28, 1970). SENEL has been renamed by the Envi- ronmental Protection Agency (EPA) to Sound Exposure Level (SEL).
GEOGRAPHICAL USAGE	State of California
PURPOSE	SENEL provides a measure which quantifies the effect of duration and magnitude for a single event measured above a specified threshold. Normally it is used in com- puting Community Noise Equivalent Level (CNEL).

104

ł

BACKGROUND

SENEL was developed at the same time as Community Noise Equivalent Level (CNEL) and is used in the CNEL formula for estimating effects of aircraft flyovers on airport communities. SENEL is an Aweighted measure of an individual flyover which time integrates the level accumulated during this event with reference to a duration of one second. Because of this integration process, SENEL takes into consideration both the duration as well as the magnitude of the noise signal.

SENEL is a special case of SEL in that the computation is made for those noise signals which exceed a certain level.

CALCULATION METHOD

 \tilde{D}

ういち ういてん 読み込んない

The Single Event Noise Exposure Level (SENEL) may be determined by the two following methods.(SEL may be computed by the same methods by disregarding the sampling threshold limitations.)

Continuous Integration
 For continuous time integration of
 A-weighted sound level above a
 specified threshold, the formula is:
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F
 F</p

SENEL = 10 log
$$\begin{pmatrix} f^2 & antilog & (AL[t]/10) & dt \\ t_1 & & \\ \hline & & 1 & second & \\ \end{pmatrix}$$
 [1]

where:

t	is time in seconds
dt	is At as it approaches O
AL[t]	is instantaneous A-level in excess of a specified threshold at time t
ر الع الع الع الع الع الع الع الع الع الع	brackets the time during which the noise signal is within a minimum of 10 dB(A) down from its maximum value
2) Tempor	al Sampling
For d	iscrete sampling of A-veighted
sound	level above a specified
thres	hold, the formula is:
SENEL = 10	$\log \begin{bmatrix} n \\ \Sigma \text{ antilog } (AL_{i}/10) \Delta t \\ i=1 \end{bmatrix} [2]$
where:	
AL i	is the instantaneous A-level in excess of a specified threshold

÷

- as for sample i is the time interval between samples in seconds Δt
- is the number of samples for which the noise is within a minimum of 10 dB(A) down from its maximum AL_i n

SENEL is a measure of the noise exposure of a single event which is in excess of a specified threshold, and as such the time limits of the integration process must be selected to encompass the greater portion of the sound energy from the source in question. From a practical standpoint, the noise samples must be taken during the time the signal is within a <u>minimum</u> of 10 dB(A) down from its maximum value.

SENEL is currently used as a criterion for identifying excessively noisy aircraft operations at California airports. According to California Administrative Code Title 4, no event shall exceed the limits recommended for takeoff and landings (Figures SENEL-1 and SENEL-2). These maximum limit values plotted in the figures correspond to the noisiest aircraft class utilizing the airport on a recurrent basis. A minimum threshold is approximated by subtracting 30 dB from the respective maximum values. The noise samples for the sound energy are taken above this threshold.

. . . .

FIGURE SENEL-1. MAXIMUM LIMITS FOR SINGLE EVENT NOISE EXPOSURE LEVEL (SENEL)

16

Dy, Distance From Start of Tokcall Kall, 1000 ft a) Takcall

AIRCRAFT TAKEOFF

18

20

72

108

100 . [

12

14

٠.

Curve	Aircraft Class	
Z	4 Engine Turbojet and Turbofan (e.g., 707, 720, DC-8)	
Y	2, 3 Engine Turbofan (e.g., 727, 737, DC-9)	
х	4 Engine "Jumbo" Turbofan* (e.g., 747)	
W .	3 Engine Airbus Turbofan* (e.g., DC-10, L-1011)	
v	2 Engine Business Jet	
V + 3 dB	4 Engine Business Jet	
	* High Bypass Ratio Engine	

;

.:

1

•

ŝ

1

1

•

109

÷

EXAMPLE

An example of SENEL for a two engine business jet (Aircraft class V, Figure SENEL-2) landing at 1 nautical mile from the landing threshold is shown in Table SENEL-I. From Figure SENEL-2 it is determined that the recommended maximum single event noise exposure level is 106 dB. According to the calculation method, 30 dB is subtracted from the maximum single event noise exposure level yielding a threshold of 76 dB.

In the SENEL example, the sampling interval was every 0.5 second, and the noise signal above threshold was measured within 10 dB(A) down from its maximum value. The resulting SENEL for the two engine jet aircraft landing is 97.4 dB which is within the recommended limits.

EQUIPMENT

- 1) Continuous Integration
 - a) Special monitoring equipment capable of integrating sound levels for a specified duration.
- 2) Temporal Sampling
 - a) If the noise level of the signal is continuous with very little variation, a sound level meter (IEC Standards) may be used.
 - b) Tape recorder
 - c) Graphic level recorder or digital computer with sampling capability.
| (Sec.) | A-Level | Antilog | Δt
(Sec.) |
|--|--------------|------------------------|--|
| 6.0 | 66.1 | <u></u> | () () () () () () () () () () () () () (|
| 6.5 | 66.7 | | |
| 7.0. | 67.5 | | |
| 7.5 | 70.3 | | |
| 8.0 | 73.5 | | |
| | 74.5 | | |
| 9.0 | 74.3 | | |
| 9.5 | 77.2 | 5.24 x 10 ⁷ | 0.5 |
| J.J. J. | 76.3 | 4.26 " " | |
| 10.5 | 77.9 | 6.16 " " | 11 |
| 1.0 | 81.5 | 14,12 " " | |
| .1.5 | 84.1 | 25.70 " " | 1+ |
| 2.0 | 84.1
86,4 | 43.65 " " | н |
| 2.5 | 88.7 | 74.13 " " | |
| .3.0 | 90.0 | 100,00 " " | 17 |
| .3.5 | 91.4 | 138.03 " " | - II |
| 4.0 | 91.7 | 147.91 " " | ır |
| 4.5 | 91.6 | 144.54 " " | |
| 5.0 | 90.7 | 117.48 " " | |
| .5.5 | 89.0 | 79.43 " " | 17 |
| .6.0 | 87.7 | 58.88 " " | |
| 6.5 | 86.4 | 43.65 " " | 11 |
| 7.0 | 84.8 | 30.19 " " | |
| 7.5 | 83.2 | 20,89 " " | 11 |
| .8.0 | 82.0 | 15.84 " " | 11 |
| 8.5 | 80.2 | 10.47 " " | |
| 9.0 | 79.8 | 9.54 " " | 11 |
| 9.5 | 78.6 | 7.24 " " | |
| 0.0 | 76.6 | 4.57 " " | |
| <u></u> | /0.0 | 4.3/ | |

SENEL = 97.41 dB

. ..***** . . .

TABLE SENEL-I EXAMPLE OF SENEL CALCULATIONS FOR AIRCRAFT FLYOVER NOISE

,不知此,此此能是不知道,我们就是我们是不能是我们是不能是不能是不能是我们的问题。我们就是是是你感激的人们就能是我们都能是不能。"他们说,他们却是我们感觉了,他们就没有什么和我

111

ł

REFERENCES

- Von Gierke, Henning, "Impact Characterization of Noise Including Implications of Identifying and Achieving Levels of Cumulative Noise Exposure", EPA Aircraft/Airport Noise Report Study, June, 1973, Task Group 3.
- California Department of Aeronautics, "Noise Standards," California Administrative Code, Chapter 9, Title 4, (Register 70, No. 48, November 28, 1970).

(Hourly Level) (HL) (L_{μ}) UNIT dB DEFINITION Hourly Noise Level (HNL) is the average (i.e., the average on an energy basis) A-level which exceeds a threshold noise level and is integrated over a time period of one hour. STANDARDS California Department of Aeronautics, "Noise Standards," California Administrative Code, Chapter 9, Title 4 (Register 70, No. 48, November 28, 1970). GEOGRAPHICAL USAGE State of California PURPOSE The purpose of HNL is to provide a single number measure of time varying noise for one hour intervals exceeding a threshold value.

HOURLY NOISE LEVEL (HNL)

Preceding page blank

114

TITLE

BACKGROUND

HNL was developed at the same time that Community Noise Equivalent Level (CNEL see p.198) was conceived in order to establish measures of noise impact for the State of California.

HNL is implemented by sampling, in Alevel, above a predetermined threshold noise level. This threshold, according to the California Administrative Code Title 4, is a noise level which is 10 dB below the numerical value of the appropriate criterion CNEL. The CNEL criterion for airport noise for both existing and proposed civilian airports is effectively 65 dB (for detailed airport noise criteria see California Code Title 4).

HNL is a special case of Equivalent Sound Level (L_{eq}) for an hourly period. It is also a subset of <u>Hourly Level</u> (HL) (L_H) . The difference being that HNL is computed from samples over a specified threshold. The difference in results between HNL and HL becomes negligible when there are three or four samples whose levels are more than 10 decibels above the threshold because then these samples become the controlling factor.

CALCULATION METHOD	HNL can be determined by three different
	methods. (HL can be computed by the same
	methods by disregarding the sampling
•	threshold limitations.)

1) CONTINUOUS INTEGRATION

For continuous time integration of Aweighted sound level above a specified threshold over one hour, the formula is: $HNL = 10 \log \begin{bmatrix} 3600 \\ f & antilog & (AL[t]/10) & dt \\ 0 & 3600 & seconds \end{bmatrix} [1]$

where:

AL[t] is instantaneous A-level in excess of a specified threshold at time t

dt is At as it approaches 0

3600 is the number of seconds in one hour

2) TEMPORAL SAMPLING

For discrete sampling of A-weighted sound level above a specified threshold over one hour, the formula is:

$$HNL = 10 \log \left[\frac{\sum_{i=1}^{n} \operatorname{AL}_{i}/10}{\sum_{i=1}^{n}} \right]$$
 [2]

where:

n is the number of samples of AL in an hour

AL_i is the instantaneous A-level above a specified threshold for sample i

ŧ

3) EVENT SAMPLING

For measurement of single events, the formula is:

HNL = 10 log $\begin{bmatrix} n \\ \Sigma \text{ antilog (SENEL}_{i}/10) \\ \underline{i=1} \\ 3600 \end{bmatrix}$ [3] where:

n is the number of samples of SENEL events in an hour

- SENEL is the integrated level of each event
 - 3600 is the number of seconds in one hour

EXAMPLE

ţ

ģ

2、112、14月1日的14年代,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日。

.

. .

last two mally mo taken wi

The following examples illustrate only the last two methods of determining HNL. Nor-mally more than three samples would be taken within a one hour period.

A) TEMPORAL SAMPLING
 (For a threshold of 65 dB and a one hour period)

Given:

 $AL_{1} = 67 dB$ $AL_{2} = 74 dB$ $AL_{3} = 76 dB$

Then:
HNL = 10 log
$$\left[\frac{\text{antilog } \frac{67}{10} + \text{antilog } \frac{74}{10} + \text{antilog } \frac{76}{10}}{3} \right]$$

= 10 log $\left[(\frac{5.01 + 25.12 + 39.81}{3}) \times 10^6 \right]$
= 73.7 dB

B) EVENT SAMPLING (A one hour period)

Given:

$$SENEL_1 = 79 dB$$
$$SENEL_2 = 86 dB$$
$$SENEL_3 = 88 dB$$

Then:
HNL = 10 log
$$\begin{bmatrix} antilog \frac{79}{10} + antilog \frac{86}{10} + antilog \frac{88}{10} \\ 3600 \end{bmatrix}$$
= 10 log
$$\begin{bmatrix} (\frac{7.94 + 39.81 + 63.09}{3600}) \times 10^7 \end{bmatrix}$$
= 54.8 dB

EQUIPMENT

Continuous Integration and Temporal Sampling

- a) special monitoring equipment capable of integrating sound levels for one hour
- 2) Temporal Sampling
 - a) for temporal sampling a sound level meter (IEC Standards) may be used if the noise level is continuous with very little variation
- 3) Event and Temporal Sampling
 - a) Sound Level Meter (IEC Standards)
 - b) Tape recorder

REFERENCES

- Von Gierke, Henning, "Impact Characterization of Noise Including Implications of Identifying and Achieving Levels of Cumulative Noise Exposure", EPA Aircraft/ Airport Noise Report Study, June, 1973, Task Group 3.
- California Department of Aeronautics, "Noise Standards," California Adminis- trative Code, Chapter 9, Title 4 (Register 70, No. 48, November 28, 1970).

CHAPTER III

ł

COMMUNICATION INTERFERENCE RATINGS

Preceding page blank

ARTICULATION INDEX (AI)

UNIT

TITLE

(None)

DEFINITION The Articulation Index is a numerically calculated measure for predicting speech intelligibility and is based on the proportion of normal speech signal that is available to a listener. The magnitude of the index ranges from 0 to 1.0.

United States

STANDARDS

American National Standards Institute ANSI S3.5-1969 (January 1969).

GEOGRAPHICAL USAGE

PURPOSE

The Articulation Index is used to rate noise environments or communication systems for their effect on speech intelligibility.

BACKGROUND

The Articulation Index is based on the fact that noise masks speech; the more noise present during speech, the lower the speech intelligibility. A signal-to-noise ratio, representing a given speech channel and noise condition, is the basis for determining the normal speech signal that is available to a listener for conveying speech intelligibility. The Articulation

> PAGES 122 AND 123 ARE BLANK

Index has been tested and validated principally against speech intelligibility studies using male speakers, therefore, the same results cannot be assumed for female or children speakers.

There are two methods for computing the Articulation Index which have been standardized. The 20 Band Method (AI-20 band), developed by French and Steinberg, is based upon the signal-to-noise ratio of speech and noise present in each of 20 contiguous frequency bands ranging from 200 to 6100 Hz. These bands (Table AI-I) were specifically chosen so that in the absence of noise the speech components within each band contribute equally to speech intelligibility. Briefly, the value of AI is determined by the corrected sum (in decibels) of the difference between peak speech levels and the noise spectra in each of the 20 corresponding bands. For the exact 20 Band Method note the Standard listed above.

AI can also be computed from the One-third Octave Band (AI-1/3 octave band) and the Octave Band (AI-octave band) Method. These methods differ from the AI - 20 Band Method by requiring that appropriate weighting factors be applied to each one-third or octave band to account for the relative contribution of each band to speech intelligibility. These methods are less accurate than the original AI-20 Band Method but more commonly used as an estimate of speech intelligibility.

TABLE AI-I

20 Frequency Bands of Equal Contribution to Speech Intelligibility

Band No.	Limits (11z)	Mid- Frequency (11z)
1	200-330	270
2	100-430	380
1 2 3	430-560	490
-1	560-700	630
5	700-840	770
6	810-1000	020
7	10808-1150	1070
R	1450-1340	1230
9	1310-1480	1400
10	1480-1660	1570
11	1660-1830	1710
12	1830/2020	1920
13	2020-2210	2130
14	2210-2500	2370
15	2500-2820	2660
16	2820-3200	3000
17	3200-3650	3409
18	3650 4250	3950
io	4250-5050	4650
20	5050-6100	5600

ş

CALCULATION METHOD

9

The calculation procedure for One-third Octave Bands and Octave Band Methods are outlined in this section. These methods should be adequate for estimating speech intelligibility in most cases except the following:

- Those instances where the difference between the level of the noise and the threshold of audibility, i.e., sensation level, for an octave or one-third octave band exceeds 84 dB.
- Sounds which have narrow band components, i.e., tones.
- Spectra with discrete frequency components or prominent peaks which cause an upward or downward spread in masking (ANSI S3.5).

For these exceptions refer to the ANSI S3.5 Standards for the 20 Band Method.

THE OCTAVE BAND METHOD AND THE ONE-THIRD OCTAVE BAND METHOD

Step 1. Plot on the appropriate work sheets (Fig. AI-1, or AI-2 depending on the filters used) the band pressure levels of the speech peaks reaching the listener's ear. (Figs. AI-1 and AI-2 utilize the preferred frequencies.) The band pressure levels of the speech peaks may be approximated by adding algebraically the frequency response

characteristics (in decibels) of the system to be evaluated and the idealized spectrum found on the work sheets (Fig. AI-1, or AI-2, or Table V).

The frequency response at each center frequency is the difference in decibels (at that frequency) between the band sound pressure level at the listener's ear and the band sound pressure level at the microphone of the talker. Care should be exercised to ensure that the frequency response properly reflects characteristics of the transmitting and receiving transducer elements of the overall system.

The idealized speech spectrum found on the work sheets (Fig. AI-1, or AI-2, or Table V) should be raised by an amount equal to the difference between the overall longterm rms for speech as measured or estimated and 65 dB, which is the overall long-term rms sound pressure level of the idealized speech spectrum of Fig. AI-1 or AI-2.

In the case of loudspeaker presentation of speech in a non-free-field or non-anechoic room, the speech level should be lowered by the number of decibels indicated in Table AI-II. It should be noted that the correction given in Table AI-II is not to be used for speech presented to listeners via earphones or by a loudspeaker operating in a free field.

TABLE AI - II
Correction for Level of Speech Presented by
Loudspeaker in a Reverberant or
Semireverberant Room

Overall Level of Speech (dB)	Amount to be Subtracted from Speech Level (dB)
85	0
00	2
95	4
100	7
105	11
110	15
115	19
120	23
125	27
130	30

CALCULATION OF THE ARTICULATION INDEX

.

TABLE AI - III

Articulation Index Calculation Form for One-Third Octave Bands

Col 4	Col 3	Col 1 Cot 2		Col 1	
Col 2 x Col 3	Weight	Speech Peak-to-Noise Difference in dB	Center Frequency (Hz)	Octave Band Frequency	
	0,0004		200	180-224	
	0.6010		250	224-280	
	0.0010		315	280-355	
	0,0014		400	355-450	
	0.0014		500	450-560	
	0.0020	·····	630	560-710	
	0.0020		800	710-900	
	0.0024		1000	900-1120	
	0.0030		1250	1120-1400	
	0.0037		1600	1400-1800	
	0.0038		2000	1800-2240	
	0.0034		2500	2240-2800	
	0.0034	· · · · · · · · · · · · · · · · · · ·	3150	2800-3550	
	0.0024		4000	3550-4500	
	0.0020		5000	4500-5600	

130

1

.

· ·

NOTE: The idealized spectrum in Figs. AI-1, AI-2, and Table V applies strictly at one meter from the lips of an ideal talker in an essentially non-reverberant, noise-free environment. The shape of the spectrum is reasonably accurate for speech measured from a point one inch to one meter in front of the talker's lips.

•

.

Step 2. Plot on the work sheet (Fig. AI-1 or AI-2) the band levels of the steadystate noise reaching the ear of the listener. The rms sound pressures of the noises from several sources, for example, ambient noise in the listener's environment and noise, if any, reaching the listener via the speech transmission system, should be added together.

Step 3. Determine at the center frequency of each of the bands indicated on the work sheet (Fig. AI-1 or AI-2) the difference in decibels between the band pressure level of the <u>speech peaks</u> and the band pressure level of the <u>noise</u>. Whenever the difference is zero or less, assign a value of zero to that difference; whenever the band pressure level of the speech exceeds the band pressure level of the noise by 30 or more decibels, assign a value of 30 to that difference. Write this speech peak-tonoise difference in Column 2 of Table AI-III or AI-IV.

TABLE AI - 🗹
Articulation Index Calculation Form for Octave Bands-
Preferred Frequencies

Co	11	Col 2	Col 3	Col 4
Octave Band (Hz)	Center Frequency (Hz)	Speech Peak-to-Noise Difference in dB	Weight	Col 2 x Col 3
180-355	250		0.0024	
355-710	500	<u>.</u>	0.0048	
710-1400	1000		0.0074	
1400-2800	2000		0.0109	*****
2800-5600	4000		0.0078	
	-		AI =	

.

-

.

4

,

.

TABLE AI - 文

•

.

.

Idealized Speech Spectrum +12 dB (Col a), Spectrum of Effective Threshold of Audibility (Col b), and Maximum Tolerable I for Unclipped Speech for Sound Having Continuous Spectra (Col c) (See Fig. AI - 1 and AI - 2)

-

	Spectrum Le of 20 Bands C peech Intellig	Contribut	ling Equal	y to	N	lid-Free	ure Level juency of ve Bands	at	Mid-Freq	uency d	ire Level of Octave I Frequer	Bands,	Mid-Freq	Juency d	ure Level of Octave Frequenci	Ba
	Mid- Frequency (Hz)	а (dB)	b (dB)	c (dR)	Mid- Frequency (Hz)	a (dB)	b (dB)	 (dB)	Mid- Frequency (11z)	a (dB)	ե (dB)	c (dB)	Mid- Frequency (Hz)	.a (dB)	ь (dВ)	- (
1 2 3 4 5	270 330 490 630 770	50 500 485 455 425	7.0 11.0 14.0 16.0 16.0	114 110 108 105 103	200 250 315 400 500	67.0 68.0 69.0 70.0 68.5	16.0 14.0 12.0 10.0 9.0	138 135 132 131 129	212 425 850 1700 3400	71.0 75.0 69.0 63.0 57.0	20.0 15.0 12.0 11.0 5.0	142 138 130 130 130	250 500 1000 2000 4000	72.5 74.0 68.0 62.0 57.0	19.0 14.0 12.0 10.0 10.0	
6 7 8 9 10	920 1070 1230 1400 1570	40 0 37.5 35 0 33 0	-16.0 -16.0 -17.5 -19.0	101 100 99 99 99	630 800 1000 1250	66,5 65.0 64.0 62.0	7.0 8.0 8.5 8.5	127 124 122 122	6800 	52.0 	25.0 			-		
10 11 12 13 14 15	1740 1920 2130 2370 2660	31,5 30.5 28.5 27.0 26.0 24.5	-20.0 -22.0 -23.5 -25.5 -27.5 -29.0	99 99 99 99	1600 2000 2500 3150 4000 5000	60.5 59.5 58.0 56.0 53.0 51.0	8.5 3.0 1.0 5.0 12.0	123 125 128 130 132 135								
16 17 18 19 20	3000 3400 3950 4650 5600	23.0 21 5 20.0 19 0 18.0		99 100 101 103 105			-		-							

.

133

فمرده وتشكروا واللغله

المراجع والمراجع والمراجع والمحافظة المحيين محجون المراجع والمحافظ المحافظ والمحمو والمحمو والمحمو المحمول والم

.

i.

•

NOTES: (1) The threshold of audibility curve, in Figs. AI-1 and AI-2, or Table V is to be considered as the minimum equivalent noise band level wherever the threshold curve exceeds the noise band level. (2) Wherever the speech peak curve exceeds the appropriate maximum tolerable level (specified in Figs. AI-1 and AI-2, or Table V), the speech peaks should be considered to be at the maximum tolerable level.

Step 4. Multiply the values for the respective bands found in Step 3, according to weighting factors in Column 3 of Table AI-III or AI-IV.

1

ı

Step 5. Sum Column 4 on Table AI-III or AI-IV. The resulting number is the AI for that particular speech system operating under the noise conditions and for the speech level specified.

EXAMPLE

Examples of the calculation of an AI by the One-Third Octave and Octave Band Methods are given in Figs. AI-3 and AI-4. The AI by the One-Third Octave Band Method is 0.53, and the AI by the Octave Band Method is 0.54 (from ANSI S3.5).

EQUIPMENT

- 1) Tape recorder (necessary for single events)
- 2) Sound level meter (IEC Standard)
- 3) Octave or 1/3 Octave band analyzer
- 4) Digital computer (optional)
- Adjustable variable band pass filter (AI - 20 Band Method)

. ;

j

2、1998年1月14日1月1日を開始に行うにした。1998年1月1日に

.

.135

Ł

REFERENCES

ł

- Acoustical Society of America, "American National Standard Methods for the Calculation of the Articulation Index", Am. Nat. Stds. Instit. S3.5-1969, January 1969.
- French, N. R., and J. C. Steinberg, "Factors Governing the Intelligibility of Speech Sounds", <u>J. Acoust. Soc. Am.</u> 19: 90-119 (1957).
- Kryter, Karl D., <u>The Effects of Noise</u> on Man, Academic Press, New York, 1970.

TITLE

SPEECH INTERFERENCE LEVEL (SIL)

UNIT

DEFINITION

The Speech Interference Level is a simplified method of quantifying noise in terms of its interfering effect on speech communication. It is calculated from the arithmetic average of the sound pressure levels of specified octave bands within the speech frequency range.

STANDARDS

[Both ANSI and ISO are in the process of writing standards for an approved form of SIL]

GEOGRAPHICAL USAGE International

dB

PURPOSE

SIL was developed as a simplified substitute for the Articulation Index (AI) for which certain voice levels were assumed. It was developed initially to evaluate the effects of aircraft noise on passenger communication during flight.

BACKGROUND

SIL essentially measures only the noise background and estimates from a table (Table SIL-I) or figure the noise level which will effect communication. The principal variables that are taken into consideration for speech intelligibility are the general voice level and distance between communicators.

SIL is an arithmetic average of octave bands in the speech frequency range. It initially included octave bands 600-1200 Hz., 1200-2400 Hz, and 2400-4800 Hz. With the advent of preferred frequencies for octave bands, the old octave bands were estimated from plots of new frequency band data. Later, preferred speech interference level (PSIL) was introduced which used 500, 1000, and 2000 Hz. octave bands. Currently proposed standards for SIL include 500, 1000, 2000, and 4000 Hz. octave bands (4 Band Method). To interpret SIL scores, graphs or tables (Table SIL-I) are used to indicate conversing distance over which speech is satisfactorily intelligible (AI=0.4).

The SIL scale gives a reasonably accurate estimate of the relative ranking of steady state noises with respect to their speechinterfering qualities. The SIL procedure is not very appropriate however for evaluating the speech-interfering quality of noise with considerably more energy at high frequencies

Distance between		Speaker's Voice Effort						
talker and listener,	Normal	Raised	Very loud	Shouting				
£t (m)	SIL, dB	SIL, dB	SIL, dB	SIL, dB				
0.5 (0.15)	73	79	85	91				
1 (0.3)	67	73	79	85				
2 (0.6)	61	67	73	79				
4 (1.2)	55	61	67	73				
6 (1.8)	51	57	63	69				
12 (3.7)	45	51	57	63				
	1							

TABLE SIL-I RELATIONS AMONG SIL, VOICE EFFORT, AND BACKGROUND NOISE*

*Corresponding to an articulation index of about 0.40.

140

į

1

;

than at low frequencies. It is also of limited usefulness under any of the following conditions: 1) the noise is not relatively steady state in its characteristics; 2) the frequency spectrum of the noise is not smooth; and 3) the speech and noise are subject to perceptible echo or reverberation.

CALCULATION METHOD

The SIL is the arithmetic average of the sound pressure levels of the noise in the four octave bands (4 Band Method) with center frequencies lying between 500 and 4000 Hz.

EXAMPLE

Table SIL-II shows an example of SIL calculation for octave band background noise data.

TABLE SIL-II

٠

EXAMPLE OF CALCULATIONS OF SIL FROM OCTAVE BAND LEVELS (4 BAND METHOD)

Octave Band Center Frequency Hz	Background Noise (dB)	Background Noise for Speech Fre- quency Band (dB)
63	63	
125	61	
250	60	
500	62	62
1000	60	60
2000	55	55
4000	45	45
8000	40	
	TOT	AL = 222
	$SIL = \frac{2}{3}$	$\frac{22}{4} = 55.5 dB$

The resulting SIL value of 55.5 dB allows speech communication at a normal voice level for a distance of approximately 4 feet (from Table SIL-I).

EQUIPMENT

Sound Level Meter (IEC Standard)
 Octave band analyzer

REFERENCES

- Beranek, Leo, and H. W. Rudmose, "Sound Control in Airplanes", Jr. of the Acoustical Society of America, March, 1947, v. 19, no. 2, 357-364.
- Beranek, Leo, <u>Noise and Vibration Control</u>, McGraw-Hill Co., New York, 1971.
- Burns, William, <u>Noise and Man</u>, J. B. Lippincot Co., Phil., 1968.
- Webster, J. C., "Effects of Noise on Speech Intelligibility", from "Noise as a Public Health Hazard", Proceedings of Conference, American Speech and Hearing Assoc., Washington, D. C., February, 1969.

NOISE CRITERION CURVES (NC)

UNIT

TITLE

(None) [dB like scale]

DEFINITION

4

Noise Criterion Curves are sets of octave band levels (as shown in Figure NC-1; Table NC-I) which were established to provide a single number rating for octave band spectra.

STANDARDS

(None)

United States

GEOGRAPHICAL USAGE

PURPOSE

NC-curves are used in setting specifications of acceptable ambient noise levels in various indoor environments. It is commonly used for rating noise in offices, auditoriums, sound studios, and restaurants. Table NC-II lists some suggested noise criteria for different types of activity areas.

Preceding page blank

BACKGROUND

.

大学になる なけいか 日本学校 修正 たい

The Noise Criterion rating method was developed from extensive interviews and noise measurements of various office environments. Initially the NC curves were known as speech communication (SC) criterion. The NC measure has been primarily used since its introduction in 1957 in architectural acoustics. This measure specifies a single number rating number (i.e., NC-50) which is assigned to a curve of octave-band sound pressure levels. When the noise level in a given architectural space is measured in the required octave bands of frequency, the sound levels should not exceed the NC rating curve recommended for a communication environment (Table NC-II and NC-III).

The NC method is based both on the Speech Interference Level (SIL) and the Loudness Level (LL) measures. The NC curves are drawn (Figure NC-1) such that computed LL for each curve is 22 dB (phons) higher than the SIL. The NC number (e.g., NC-30) which is assigned to each curve reflects the SIL value which is obtained from an average of the levels in the appropriate octave bands.

146

ł

TAB	LE	N	C-	I
-----	----	---	----	---

OCTAVE-BAND SOUND-PRESSURE LEVELS ASSOCIATED WITH THE 1957 NOISE CRITERION (NC) CURVES OF FIG. NC-1*

1957 noise criterion curves	- 63 - 117	125 117	250 117	500) 117	1,000 117	2,000 117	4.000 117	8,000 117
NC-1	17	36	29	42	17	н	12	11
NC-20	51.	10	33	26	22	10	17	16
NC 25	51	14	37	- 34	27	21	22	21
NC 30	57	-18	ि स	35	31	29	28	27
NC 35	60	52	-45	-tu	36	31	33	32
NC 40	61	56	50	6	н	39	38	37
NC F	67	60	51	- 19	-tri	11	13	12
NG-50	71	64	58	54	51	19	18	17
NC-55	71	67	62	.5N	36	- 51	- 53	
NC-60	77.	71	67	63	61	59	58	57
NC-65	- 8iF	75	71	68	- 66i	61	- 63 - [62

*Beranek (1971)

.

 $^{\circ}$

10.000 - 11.00

14 Terminal

TABLE NC-II RECOMMENDED NOISE CRITERION FOR OFFICES*

1

1

NG Corve NG unity	Communication Environment	Typical Applications Executive offices and conference rooms for 50 people		
20-30	Very quiet officetelephone use sat- isfactorysuitable for large con- fractices			
20-35	"Quiet" office; satisfactory for con- ferences at a 15-0 table; normal voice 40 to 30 fr; telephone use satisfactory	Private or semiprivate offices, re- ception rooms and small con- ference rooms for 20 people		
35-40	 Satisfactory for conferences at a 6- to 8-ft tablet telephone one catisfac- tory; normal varie 6 to 12 ft 	Medium-sized offices and indus- trial fusiness offices		
40-50	Satisfactory for conferences at a 4- to 5-ft table: (clephone use occasion- ally dightly difficult; normal voice 3 to 6 ft; calsed voice 6 to 12 ft	Large engineering and drafting rooms etc.		
50 55	Unsatisfactory for conferences of more than two or three people; teles plante or slightly difficult; not- mal voice 1 to 2 ft; raised voice 3 to 6 ft.	Secretarial aceas (typing) account- ing areas (fusiness machines), filocprint coons. etc.		
Above 55	"Very noisy" ; other cuvironment un- satisfactory ; telephone use difficult :	Not recommended for any type of other		

*Beranek (1960)

148

ł

í

Type of Space	Recommended NC Curve NC units	Computed Equivalent SLM Readings Weighting Scale .1
Broadcast studios	15-20	25-30
Concert halls	15-20	25-30
Locitimate theaters (500 seats, no amplification)	20 25	30-35
Musicrooms	25	35
Schoolrooms (no amplification)	25	35
Television studios	[25 [35
Apartments and hotels	25-30	35-40
Assembly halls (amplification)	25-35	35-40
Homes (sleeping areas)	25-35†	35-45†
Motion-picture theaters	30	41}
Hospitals	30	40
Charches (no amplification)	25	35
Controoms (no amplification)	25	30 35
Libracies	30	411-45
Restaurants	45	55
Coliseums for sports only		
(amplification)	50	60

TABLE NC-III

÷

子子,如此是人们是有这些人的是人名英格兰斯 医结肠炎 人名英格兰斯姓氏 网络拉拉斯特尔普拉斯特普拉特姓氏 化基苯基基基基基基基基基基基基本 化分析 医子宫外外

FRANK IN THE RESERVED

100 M + + + 1 + 1 + 1

1999 - Alexandre State (1997)

RECOMMENDED NOISE CRITERION FOR ROOMS*

*Beranek (1960)

Approximate A-levels are given in Table NC-III which are computed from the appropriate NC curves. This listing is for comparison purposes only. It is not recommended that dB(A) readings be substituted for the NC ratings in determining specifications for a noise situation. However, if A-level should be used to estimate the noise environment suggested by an NC rating, the A-level reading from Table NC-III should be reduced by about 5 dB.

NOISE CRITERION ALTERNATE (NCA) CURVES

When estimation of the levels of the acoustical environment and the effects of the low-frequency noise is less critical (i.e., a storage room versus an auditorium), NCA ratings are often used. They are applied in situations which dictate a compromise between the quality of the acoustical environment and economical considerations.

Like the NC curves, the NCA measure takes into account the SIL and the LL. For the NCA curves (Figure NC-2), the LL-SIL difference is limited to 30 dB (phons) above the NCA value. This means there might be complaints whenever the LL-SIL difference

exceeds 30 dB (phons). In some office noise situations there are objections when the low frequency levels of a noise exceed the value given by the NCA curves, even though the recommended SIL is low enough to allow for satisfactory speech communication. Substantial objections also arise whenever there are low-frequency noise fluctuations or beats between the low frequency components. It is therefore recommended that the NCA curves only be applied in an industrial noise situation.

CALCULATION METHOD Noise Criterion (NC) curves as shown in Figure NC-1 and the equivalent numbers in Table NC-I are applied to steady state noises to enable the architect to specify the maximum noise levels permitted in each octave band for a specified NC curve. A NC value is assigned to the spectrum of noise to be evaluated corresponding to the highest NC curve to which the spectrum is anywhere tangent. Thus, the NC rating is almost always determined by the sound pressure level at a single octave band frequency.

EXAMPLE

i

In order to determine the NC rating of a given noise, it is necessary to measure the sound pressure level in each octave band for a given spectrum. Table NC-IV contains the example numerical values.

TABLI	S NC-IV
NC RATING FROM (OCTAVE BAND LEVELS
Band Center Frequency Hz	Background Noise (dB)
63	63
125	61
250	60
500	62
1000	60
2000	55
4000	45
8000	40

TABLE NC-TV

Given the octave band values shown in Table NC-IV and plotted in Figure NC-3, the NC rating is NC-59. This can be determined by the level in the fourth band (500 Hz) which is 1 dB less than the NC-60 curve.

EQUIPMENT

1) Sound Level Meter (IEC Standard) 2) Octave Band Analyzer

153

a shari e Miri a . .

REFERENCES

ł

2

アイトロスクライント しかっしゃうけい つうちょうしい せつかんのう ほうさいしょうしょう 切断を行いた か

- Beranek, Leo L., <u>Noise Reduction</u>, McGraw-Hill Publisher, New York, 1960.
- Beranek, Leo L., "Noise and Vibration Control", McGraw-Hill, (1971).
- Peterson, Arnold, and E. E. Gross, Jr. "Handbook of Noise Measurement", General Radio Company, (1972).

TITLE	PREFERRED NOISE CRITERION (PNC)
UNIT	(None) [dB like scale]
DEFINITION	Preferred Noise Criterion (PNC) curves are sets of octave band levels (as shown in Figure PNC-1, Table PNC-I) which were established to provide a single number rating for octave band spectra.
STANDARDS	(None)
GEOGRAPHICAL USAGE	United States
PURPOSE	PNC-curves are revisions of NC-curves and are used for similar situations in rating the noise environments for offices, auditoriums, sound studios, and restaurants. Table PNC-II lists some suggested noise criteria for different types of activity

areas.

BACKGROUND

After years of practical experience with the Noise Criterion (NC) method, certain improvements were desired. The 1971 Preferred Noise Criterion (PNC) curves were developed in answer to the many objections made about the adequacy of the NC curves. Four of the most notable criticisms were:

 The NC curves were not properly adapted from the old octave-frequency bands (where the low is 20-75 Hz) to the new preferred frequencies (which centered on 31.5 and 63 Hz).

2) Preferred Speech Interference Level (PSIL) was introduced and was based on the levels in new preferred bands centered at 500, 1000, and 2000 Hz.

 The NC curves did not conform well to the more recent data on the threshold of hearing for a continuous noise,

4) The shape of the 1957 NC curves did not adequately compensate for tone reproduction in an architectural space.

In order to improve upon this method for evaluating tonal quality in a noise situation, the PNC curves were changed in the low and high frequencies. This effectively eliminated the "hissy" and "rumbly" sound associated with a shaped noise spectrum equal in octave-band levels to a particular

Preferred mise criterion curves	31.5 Elz	63 Hz	125 Hz	250 Hz	500 Hz	1,0800 Hz	2,0606 - Hiz	1.080 117	8,000 Hz
PNC-15	58	13	35	28	21	15	19	ĸ	N
PNC-20	59	16	39	32	26	20	15	13	13
PNC-25	60	19	13	37	31	25	[_20]	18	Ix
PNG-30	61	52^{-1}	16.	41	35	30	25	23	23
PNC-95	62	33	-0	15	10	35	30	28	28
PNC-10	61 (59	- 1	[50]	15	40	36	33 (33
PNC-15	67	63		51	50	15	11	38	38
PSC/50	70	liti	62	- 38	54	50	46	-13	13
PNC-55	7.0	70	66 -	62	59	55	51		18
PNC-40	76 [73	69	101	63	5.0	16	· · · [5.
PNC-65	79	76	7.1	70	67	61	401	58	18

PNC OCTAVE-BAND SOUND-PRESSURE-LEVEL VALUES ASSOCIATED WITH THE 1971 PREFERRED NOISE CRITERION (PNC) CURVES OF FIG. PNC-1*

*Beranek (1971)

5

1.000

.

TABLE PNC-II

PNC NOISE CRITERIA

RECOMMENDED CATEGORY CLASSIFICATION AND SUGGESTED NOISE CRITERIA RANGE FOR STEADY BACKGROUND NOISE AS HEARD IN VARIOUS INDOOR FUNCTIONAL ACTIVITY AREAS*

Type of space (and acoustical requirements)	PNC curve	Approximate Z _A , dB21
'oncert halls, opera houses, and recitat balls (for listening to faint musical sounds)	10 to 20	21 10 30
Jant nuscell sounds) iroadcast and recording stu- dios (distant microphone pick- up used)	10 (n 20	21 to 30
arge auditoriums, large drama theaters, and churches (for ex- cellent listening conditions)	Nut to exceed 20	Not to exceed 30
ingateust, relevision, and record- ing studios (close microphone pickup only)	Not to exceed 25	Not to exceed
mall duditoriums, small thea- ters, small churches, music re- hearsal roants, large meeting and conference rooms (for good listening), or executive offices and conference rooms for 50 people (no amplificention)	Not to exceed 35	Not to exceed 42
ledroons, sleeping quarters, los- pitals, residences, apartments, butels, molels, etc. (for sleep- ing, resting, relaxing)	25 to 40	34 to 47
vivate or semiprivate offices, small conference rooms, class- rooms, illutaries, elc. (for good listening conditions)	30 to 40	38 to 47
iving rooms and similar spaces in dwellings (for conversing or listening to radio and TV)	30 to 40	38 to 47
arge offices, reception areas, re- lailshops and stores, cafeterias, restaurants, etc. (for moder- ately good listening coaditions)	35 to 45	42 in 52
oldies, laboratory work spaces, drafting and engineering rooms, general secretarial areas (for fair listening conditions)	40 to 50	47 to 56
icht maintenance shops, of- fice and computer equipment ronns, kitchens, and laundries (for moderately fair listening conditions)	45 to 55	52 to 61
huja, garages, power-plant con- trol rooms, etc. [for just ac- ceptable speech and telephone communication]. Levels above PNC-60 are not recommended for any office or communication situation	50 to 60	50 to 64
or work spaces where speech or telephone communication is not required, but where there oust be no risk of hearing damage	60 10 75	66 to 80

*Beranek (Ref. 2)

160

£

NC curve. The PNC values were made about 1 dB lower than the NC curves in the four octave bands at 125, 250, 500 and 1000 Hz for the same curve rating numbers. In the 63 Hz band the levels were 4 or 5 dB lower and there was a reduction in level in the highest three bands of 4 or 5 dB. Because of the steep slope of the PNC curves, the levels in the highest three frequency bands were much lower than at the midfrequencies.

The PNC method takes into consideration both the Preferred Speech Interference Level (PSIL) and Loudness Level (LL). The curve number (i.e., PNC-30) reflects the PSIL value for the sound pressure levels at the 500, 1000 and 2000 Hz octave bands. The PNC curves at the two frequency bands 4000, and 8000 Hz were flattened off to conform with the latest equal-loudness contour data.

Approximate A-levels are given (Table PNC-II) which are computed from the appropriate PNC curves. This listing is for comparison purposes only. It is not recommended that dB(A) readings be substituted for the PNC ratings in determining specifications for a noise situation. The same A-level reading may be obtained for a wide variety of shapes of spectra. Furthermore, it is important that the engineer or architect

know the levels in the eight octave bands in order to make the necessary noise control design recommendations. However, if Alevel should be used to estimate the noise environment suggested by a PNC rating, the A-level reading from Table PNC-II should be reduced by about 3 to 5 dB.

CALCULATION METHOD The Preferred Noise Criterion (PNC) curves are applied in the same manner as the NC curves. Table PNC-I has the number equivalents corresponding to the PNC curves in Figure PNC-1. A spectrum level of a room, for example, is assigned a PNC rating depending on its tangential relationship to the highest PNC curve. Thus, the PNC rating may be determined by the sound pressure level at a single octave band frequency.

EXAMPLE The first step in determining the PNC rating for a given noise is to measure the noise levels in each octave band for the noise spectrum. Table PNC-III contains the necessary numerical values.

TABLE PNC-III OCTAVE BAND LEVELS USED IN CALCULATING PNC RATING

Band Center Frequency Hz	Background Noise (dB)
63	63
125	61
250	60
500	62
1000	60
2000	55
4000	45
8000	40

In Figure PNC-2 a plot of the noise spectrum on the family of PNC curves, shows that for this noise the PNC rating is PNC-61. This can be determined by the level in the fifth band (1000 Hz) which is 1 dB more than the NC-60 curve.

EQUIPMENT

Sound Level Meter (IEC Standard)
Octave Band Analyzer

REFERENCES

 Beranek, Leo L., "Noise and Vibration Control", McGraw-Hill, (1971).

 Beranek, Leo L., Warren E. Blazier, and J. Jacek Figwer, "Preferred Noise Criterion (PNC) Curves and Their Application to Rooms," <u>Jr. of Acoust. Society</u> <u>of America</u>, v. 50, no. 5 (part 1, Nov. 1971, p. 1223.

The second se second se

164 FIGURE PNC-2. PNC CURVES WITH NOISE SPECTRUM EXAMPLE

CHAPTER IV

COMMUNITY RESPONSE RATINGS

CONTRACTOR STREET

Preceding page blank

167

TITLE	COMPOSITE NOISE RATING (CNR _C) For Community Noise
UNIT	(None) [quantity is expressed by a "letter" in 5 dB increments]
DEFINITION	The Composite Noise Rating is a measure which uses octave band sound pressure level data with appropriate corrections for spectral characteristics, background noise interference, and time of day.
STANDARDS	(None)
GEOGRAPHICAL USAGE	United States
PURPOSE	CNR _C is used to assess the influence of various noise sources such as traffic, industrial noise, as well as aircraft noise on the community.

PAGES 167 AND 168 ARE BLANK

BACKGROUND

The Composite Noise Rating (CNR_C) was the first attempt at evaluating community reaction to noise (1952). In the determination of community response it is assumed that the spectra of the noise are given as sound pressure levels in octave bands of frequency, and that these values are obtained by averaging (on an *energy* basis) over a reasonable time interval and over a reasonable number of locations in the community.

Figure CNR_C -1 shows a family of curves that define the *noise level rank*. The ranks are designated by the letter *a* to *m* in ascending order. Each rank denotes the *zone* between two neighboring curves, i.e., *c* - zone, *d* - zone, etc.

To determine the level rank of a noise the measured or calculated octave band spectrum would be superimposed onto Figure CNR_C-1. The noise level rank for the community noise is given by the highest zone into which the spectrum protrudes.

The final CNR_C is the level rank modified by six correction factors for: 1) discrete frequency components, 2) impulsive nature of the sound, 3) repetitiveness of the sound, 4) background noise level in the community, 5) effect of the time of day, and 6) previous community exposure to the noise.

FIGURE CNR-1. Family of curves used to determine the noise level rank.

Predicting community reaction to a noise source originally depended upon each of the following six categories corresponding to the CNR_C rating. These six descriptors are: 1) no annoyance, 2) mild annoyance, 3) mild complaints, 4) strong complaints, 5) threats of legal action, and 6) vigorous legal action. They were originally derived from extensive previous experience with community noise response and a series of eleven case histories in which measures of noise level and its operation were correlated with the community reaction.

Stevens, Rosenblith, and Bolt later developed a modification of the 1952 CNR (Ref. 3). The changes were in the extension of the range of consideration for background noise levels to encompass a range of +10 to -15 dB; the correction for repetitiveness from the number of 20-30 second events to the percentage of time a noise source operated in an 8hour period; and an adjustment was made for seasonal influence on noise. For example, if the source operated only in the wintertime a reduction of -5 dB in the effective noise stimulus was permitted.

The most notable distinction between the two schemes was a change in the description of community response. In the earlier

study six descriptors with the words annoyance and legal action were used. In this publication the scale of response was reduced to the following five descriptors: 1) no observed reaction, 2) sporadic complaints, 3) widespread complaints, 4) threats of community reaction, and 5) vigorous community reaction.

CALCULATION METHOD

In order to calculate CNR_{C} , the octave band sound pressure levels of the intruding noise source are determined from measurements or estimation. These levels may be plotted on Figure $CNR_{C}-1$ to derive a level rank letter. This level rank is adjusted according to the community information and the procedure outlined in Table $CNR_{C}-I$ (Table $CNR_{C}-II$, Figure $CNR_{C}-2$, 3).

To illustrate, for a level rank of letter f a -2 adjustment would decrease the level rank to d which conveniently changes to capital D as the descriptor of CNR_C . Community response for this illustration is estimated by the CNR_C value of D which when read from the graph in Figure CNR_C-4 would lead to expected responses from a community somewhere in the range of "sporadic" and "widespread" complaints.

FIGURE CNR-2.

.•

Family of curves used to determine the correction number for background noise.

FIGURE CNR_c3. Proposed correction numbers for repetitiveness of the noise when the source operates on a reasonably regular daily schedule.

FIGURE CNR-4.

ŝ

计中心 化分子子 化甲基丙基 化化合物化合物 化合物化合物合物化合物合物 化甲基甲基乙酰胺 计分子分析 计计算机 化分子分子

1

The wide curve shows the range of responses that can be expected from communities exposed to noises of increasing severity.

177.

TABLE CNR-I C LIST OF CORRECTION NUMBERS TO BE APPLIED TO NOISE LEVEL RANK TO GIVE CNRC

Influencing Factor	Correction Number
1. Background noise (see Fig. CNR-2 on Table CNR-II)	+2 to -3
2. Temporal and seasonal factors	
a. Daytime only Nighttime	-1 0
b. Repetitiveness (see Fig. CNR-3)	0 to -6
c. Winter Summer	-1 0
3. Detailed description of the noise	
a, Continuous spectrum Pure-tone components	0 +1
b. Smooth time character Impulsive	0 +1
4. Previous Exposure	
None Some	0 1

Neighborhood	Correction Number
Very quiet suburban	+1
Suburban	0
Residential urban	-1
Urban near some industry	-2
Area of heavy industry	-3

•

TABLE CNR-II CORRECTIONS FOR BACKGROUND NOISE

EXAMPLE

Table CNR_C-III provides octave band noise levels in a suburban community resulting from a factory that plans to operate continuously at night from 8:00 p.m. to 10:00 p.m. Also shown are background levels without the factory operating. Time of year is summer. The noise is impulsive and contains a whine (pure tone).

	L L	
Octave Frequency Band Hz	Factory Noise dB	Background Noise dB
20-75	45	40
75-150	50	42
150-300	45	39
300-600	41	33
600-1200	33	27
1200-2400	34	20
2400-4800	27	15
4800-10000	22	10

TABLE CNR_-III

By superimposing the factory noise spectrum on the level rank curves as shown in Figure CNR_{C} -5, the level rank is determined to be c. Table CNR_{C} -IV gives the corrections for the noise and environmental characteristics that will adjust the level rank c up two letters (+2) to level rank e.

FIGURE CNR-5.

.

うちょう とうしょう たいののない たいのいち たい

(

.

Example showing determination of level rank (C) for factory noise.

î

TABLE CNR_C-IV

EXAMPLE OF CORRECTION NUMBERS TO BE APPLIED TO NOISE LEVEL RANK TO GIVE COMPOSITE NOISE RATING.

	Influencing Factor	Correction Number
1.	Background noise (see Fig. CNR _c -6)	+1
2.	Temporal and seasonal factors	:
	Nighttime	0
	Repetitiveness (see Fig. CNR _C -3)	-1
	Summer	0
з.	Detailed description of the noise	
	Pure-tone components	+1
	Impulsive	+1
4.	Previous exposure	
	None	0

Total Correction = +2

Thus the level rank with the applied corrections becomes a CNR_C of *E*. This CNR_C of *E* read on the response curve in Figure CNR_C-4 would predict the response of "widespread complaints" with possibilities of "threats of community action". If CNR_C is used as a guide in estimating community response, the factory would do well to adopt an alternate operation schedule or apply some noise control procedure.

EQUIPMENT

- 1) Sound Level Meter (IEC Standard)
- 2) Tape Recorder (optional)
- 3) Octave Band Analyzer

REFERENCES

- Harris, Cyril, <u>Handbook of Noise Control</u>, McGraw-Hill Book Co., New York, 1957.
- 2. Rosenblith, W. A., K. N. Stevens and the Staff of Bolt Beranek and Newman Inc., <u>Handbook of Acoustic Noise Control</u>, Vol. 2 Noise and Man. WADC TR 52-204, Wright-Patterson Air Force Base, Ohio: Wright Air Development Center (1953).
- 3. Stevens, K. N., W. A. Rosenblith and R. H. Bolt, "A Community's Reaction to Noise: Can It Be Forecast?", Noise Control <u>1</u>: 63-71 (1955).

TITLE	COMPOSITE NOISE RATING (CNR _A) For Aircraft
UNIT	(None) [dB like scale]
DEFINITION	The Composite Noise Rating is a measure for aircraft noise which uses Perceived Noise Level (PNL) with appropriate cor- rections for frequency of operations, time of day and seasons of the year.
STANDARDS	(None) Related Documents: BBN Technical Report, "Land Use Planning Relating to Aircraft Noise," FAA, October 1964, including Appendix A, May 1965.
	Also published by the Department of Defense as AFM 86-5, TM 5-365, NAVDOCKS P-98, "Land Use Planning with Respect to Air- craft Noise."
PURPOSE	Composite Noise Rating is used to determine the relative impact of aircraft noise near an airport. It is employed as a guide to land use planning in areas adjacent to airports.

BACKGROUND

The Composite Noise Rating (CNR_A) of 1964 placed more emphasis on the influence of aircraft noise in the community environment than its predecessor - CNR_C (1955) (see CNR_C p.¹⁷⁰). This improved CNR_A evolved from an Air Force sponsored noise survey which explored both community reactions and the physical noise levels of the surrounding areas. Instead of measuring the noise from a single source, the objective was to predict the effect of a large number of separate operations, and to develop a single noise rating number scale which could be related to community response.

The original CNR went through a series of modifications. The most noteworthy change was the replacement of the letter descriptors (a thru m) for the noise level rank curves with a numerical equivalent defined by the level of the curve at the 300-600 Hz frequency band (Figure CNR_a-1).

Other changes were made which eliminated the necessity to make adjustments for the discrete frequencies and the impulsive characteristics of the noise. These two factors were discarded because they were not predominantly present in the military aircraft used at that time.

The correction for duration (repetitiveness) was modified to apply directly to the

FIGURE CNR-1. DETERMINATION OF EQUIVALENT SPL IN 300-600 Hz BAND FOR TWO TYPICAL SPECTRA. VALUES ARE 105 dB FOR SPECTRUM (1) AND 60 dB FOR SPECTRUM (2) TO THE NEAREST 5 dB. (From WADC TN 57-10)

186

ł

level of the spectrum for summation on an energy basis rather than the previously used graphical estimation method. The averaging of the time-varying signals from the aircraft flyovers yields the *equivalent* continuous sound pressure level (L_{eq}) for the maximum sound pressure level in the 300 to 600 Hz band.

Additional environmental corrections were added to L_{eq} . One correction factor was for the seasonal variations of the year, and the other weighted the three segments (0600-1800 daytime, 1800-2300 evening, and 2300-0600 nighttime) of a 24 hour period.

The background (ambient) noise correction followed the same pattern as used previously. This adjustment ranged from +5 dB for quiet suburban areas to -10 dB for noisy urban communities.

In this updated version of CNR, an attempt was made to quantify more specifically the adjustments for community attitudes and previous exposure to aircraft operations. This procedure provided the following descriptions:

Community has had some previous exposure to noise from air base operations, but little effort is made to foster good public relations; correction may also be applied in a situation where the community has not been exposed to noise from air base operation previously, but some effort has been made to foster good public relations. -5 dB

Community has had considerable previous exposure to noise from air base operations, and air base-community relations are good. -10 dB

With good public relations, the correction can be applied for an operation of limited duration: it cannot be applied for an indefinite period. -15 dB

The value of CNR_A obtained from the adjusted L_{eq} was translated into descriptions of estimated community response by Table CNR_A-I .

Description of Community Response	Equivalent Continuous SPL in 300-600 Hz Octave, Plus Corrections
Essentially no complaints are reported: the noise may, however, interfere occasionally with activities of the residents.	Less than 45 dB
Some residents in the community may complain, perhaps vigorously. Concerted group action is pro- bably not brought against the authorities, but the possi- bility of such action exists.	45 to 55 dB
Concerted group action is brought against the authorities. The community action may vary from strong threats to vigorous action.	Greater than 55 dB

TABLE CNR_A-I

The major innovation at this stage in the development of CNR was the conception of a technique which would allow the user to proceed directly from a series of operational characteristics of aircraft to derive a noise rating and expected community response. This technique was a preliminary step toward facilitating the description of the total operations of an airbase by CNR_A contours.

Several developments took place in 1963 which lead to further changes in CNR. The most significant factor being the substitution of PNL calculation for the counterpart noise level rank of L eq. Fourteen sets of PNL contours were developed for a variety of aircraft. These contours coupled with additional changes in corrections for environmental conditions simplify the application procedure for the average user. The number of measurement corrections for PNL were reduced to three: 1) weighting for time of day (daytime 0700-2200, and nighttime 2200-0700); 2) seasonal adjustment; 3) the number of aircraft operations (with average duration assumed).

CALCULATION METHOD

 CNR_A is determined from PNL_{max} for aircraft and the appropriate correction according to the formula:

$CNR_A = PNL_{max} + C$ [1]

where:

PNL is obtained from measurements or from graphs for various aircraft types (see Standard).

C is the sum of the corrections listed in Tables CNR_A-II and III.

Aircraft operations are divided into takeoff, landing and ground run-up groups. The CNR, for each aircraft type within each group is computed separately with the appropriate corrections applied. The maximum CNR, value for each group is selected and taken as the descriptor for take-off or landing operations unless three or more of the CNR_A's are within 3 units of this maximum value. In the latter case, the maximum CNR_A is increased by 5 units. The descriptor CNR_n's for the landing and take-off operations are compared and the larger of the two selected to represent CNR_h for the combined set of operations.

CNR_A for ground run-up operations are treated in a similar manner, but evaluated separately in determining community response.

The value of CNR for these groups of aircraft operation just determined may be translated from Table CNR_A-IV to obtain an estimate of community response.

190

TABLE CNRA-II

i

Ż

1

100 T 100

.

OPERATIONAL CORRECTIONS TO APPLY TO PERCEIVED NOISE LEVELS FOR TAKEOFFS AND LANDINGS

FREQUENCY OF OPERATIONS

Number of Takeoffs or Landings Per Period		Correction
Day (0700-2200)	Night (2200-0700)	0011000101
Less than 10	Less than 5	-5
10-30	5-15	0
31-100	16-50	+5
More than 100	More than 50	+10

TIME OF DAY

Time of Day	Correction
0700-2200	0
2200-0700	+10

SEASON OF YEAR

Season	Correction
All year	0
Winter only	-5

Note: For the special situation where the area in question is an on-base military housing installation, an additional correction of -5 is suggested.

ł
TABLE CNR_A-III OPERATIONAL CORRECTIONS TO APPLY TO PERCEIVED NOISE LEVELS FROM RUNUP OPERATIONS

NUMBER OF RUNUPS

Number of Runu	Correction	
Day (0700-2200)	0011-600101	
5 or less	3 or less	0
More than 5	More than 3	+5

DURATION OF RUNUP

Duration in Minutes	Correction
Less than 1	-5
1 to 5	0 ·
More than 5	+5

TIME OF DAY

Time of Day	Correction
0700-2200	0
2200-0700	+10

192

:

TABLE CNRA-IV								
CHART FOR RATING	ESTIMATING	COMMUNITY	RESPONSE	FROM	COMPOSITE	NOISE		

Composite 1	Noise Rating	
Takeoffs and Landings	Runups	Description of Community Response
Less than 100	Less than 80	Essentially no complaints would be expected. The noise may, however, interfere occasionally with certain activities of the residents.
100 to 115	80 to 95	Residents in the community may complain, perhaps vigorously. Concerted group action is possible.
Greater than 115	Greater than 95	Individual reactions would likely include repeated, vigorous complaints and recourse to legal action. Concerted group action would be expected.

EXAMPLE

An example of CNR_A at a particular location in the summertime for flight operations and ground runups is shown in Tables CNR_A-V , VI and CNR_A-VII , respectively.

TABLE $CNR_A - V$ EXAMPLE OF CNR_A CALCULATIONS FOR TAKEOFFS

Aircraft	Time of Day	No.**	PNL	0.**	orrect Time	ions Season	CNR
Civil Turbojet* > 2000 miles	0700-2200	20	108.	0	0	0	108.
Civil Turbojet < 2000 miles		15	106.	0	0	0	106.
Civil Turbofan > 2000 miles	41	35	103.	+5	0	0	108.
Civil Turbofan < 2000 miles		18	101.	0	0	0	101.
Civil Turbofan < 2000 miles	2200-0700	3	101.	5	10	0	106.

*The flight range for this type of aircraft in the example is greater than 2000 miles. The PNL values for this aircraft are given in previously mentioned Standard. It is recommended that PNL be used to the nearest dB.

**Frequency of operations per time period.

The maximum CNR_A for this group of aircraft measured during take-off is 108. There are three other CNR_A values which are within 3 units of this maximum. Thus maximum CNR_A is increased by 5 units to equal 113 as the CNR_A descriptor for take-off operations.

TABLE CNR_AVI EXAMPLE OF CNR_bCALCULATIONS FOR LANDINGS

	Time of				Correct:	ions	
Aircraft	Day	NO.	PNL	No.	Time	Season	CNR
Civil Turbojets and Turbofans	0700-2200	81	91	5	0	0	96
Civil Turbojets and Turbofans	2200-0700	10	91	0	10	٥	101

CNR_A is computed as 101 for landing operations at this point in the community.

Since the CNR_A of 113 for take-off operations is greater than the CNR_A of 101 for landing operations, the CNR_A of 113 is the Composite Noise Rating for the combined flight operations.

.1,95

Table $\text{CNR}_{\overline{A}}\text{VII}$ examines the effect of aircraft ground run-up operations on the community.

TABLE CNRAVII

EXAMPLE OF CNR_A CALCULATIONS FOR GROUND RUN-UP OPERATIONS

Aircraft	Time of Day	No.	Duration of Run-up Min.	PNL (PNdB)		rrect Dur.		CNR
Civil Turbofan	0700-2200	3	.5	79	0	-5	0	74
Civil Turbojet	0700-2200	6	4	73	5	0	0	78

Thus the CNR_A for aircraft ground run-ups is 78.

Using the values of CNR determined in this example in conjunction with Table $CNR_{A}-IV$, the reaction of the community would be estimated as follows:

For Flight Operations

 $CNR_{h} = 113$ Individuals may complain, perhaps vigorously. Con-certed group action is possible.

For Ground Run-ups

 $CNR_{h} = 78$ Essentially no complaints would be expected. The noise may, however, interfere occasionally with certain activities of the resident.

Thus reactions of the community would be expected for the flight operations, but not for ground run-ups.

EQUIPMENT

With Field Noise Measurements

- Tape recorder (necessary for single events)
- 2) Sound Level Meter (IEC Standard)
- 3) One-third octave band real time analyzer
- Or, One-third octave band analyzer plus graphic level recorder

Without Field Noise Measurements

- a. No equipment is necessary. CNR_A contours can be drawn using PNL levels for different classes of aircraft along with proposed volume of operations.
- In the interest of economizing time and money, use of a high speed digital computer is recommended.

REFERENCES

- Department of Defense, AFM 86-5, TM 5-365, NAVDOCKS p-98, "Land Use Planning with Respect to Aircraft Noise".
- 2. Stevens, K.N., Adone Pietrasanta, "Procedures for Estimating Noise Exposure and Resulting Community Reaction From Air Base Operations" WADC Technical Note 57-10, April 1957

	, \qquad
UNIT	dB
DEFINITION	The Community Noise Equivalent Level (CNEL) is the average (i.e., average on an energy basis) noise level measured in A-level for a 24 hour period with different weighting factors for the noise levels occurring during the day, evening and nighttime periods.
STANDARDS	California Department of Aeronautics, "Noise Standards," California Administrative Code, Chapter 9, Title 4 (Register 70, No. 48, November 28, 1970).
GEOGRAPHICAL USAGE	State of California
PURPOSE	CNEL is used in the assessment of noise impact areas around airports. It was deve- loped for noise surveillance in land use planning.

COMMUNITY NOISE EQUIVALENT LEVEL (CNEL)

1

CB

-198

1

TITLE

BACKGROUND

.

CNEL was developed to provide a measure of noise impact for the State of California airports using a simple weighting network to account for spectral distribution of the noise. The Aweighting was chosen because of its wide spread acceptance and international standardization.

Evening (1900-2200) and nighttime (2200-0700) events are increased in level by 5 and 10 dB respectively to account for the lower tolerance of people to noise during those time periods.

CALCULATION METHOD

CNEL may be determined using either of the following two calculation procedures.

I. Calculations With Field Noise Measurements

1) 'CNEL using Hourly Noise Level (HNL)
CNEL = 10 log
$$\begin{bmatrix} 24 \\ \Sigma & w_i \cdot \text{antilog (HNL}_i/10) \\ \underline{i=1} \end{bmatrix}$$
 [1]

where:

w_i

is the time of day weighting factor

weighting	time
1	0700-1900
3*	1900-2200
10	2200-0700

*the exact weighting is 3.16

24 is the twenty-four hours in a full day

CNEL using Single Event Noise Exposure Level (SENEL)

w_i is the time of day weighting factor

weighting	time
1	0700-1900
3*	1900-2200
10	2200-0700
*+	hting is 2 16

*the exact weighting is 3.16

- n is the number of events measured in SENEL
- 86400 is the number of seconds in a day

II. Calculations <u>Without</u> Field Noise Measurements

> The Community Noise Equivalent Level for a given period is weighted depending upon the number of aircraft flyovers and the time of occurrence.

1

 $CNEL = SENEL + 10 \log (N_{D} + 3N_{E} + 10N_{N}) - 49.4$

where:

SENEL is the average on an energy basis

200

.....

ND			of flights	during
D	the day	(0700-	1900)	

- N_E is the number of flights during the evening (1900-2200)
- N_N is the number of flights during the night (2200-0700)

EXAMPLE

۰.

:

1

I. Calculations <u>With</u> Field Noise Measurements

1) CNEL using Hourly Noise Level (HNL)

Table CNEL-I gives the HNL values for a 24 hour period. The weighting factor for time of day has been applied and the CNEL is calculated at 80.3 dB.

2) CNEL using Single Event Noise Exposure Level (SENEL)

> Given (Table CNEL-II) the SENEL events and the approximate time of occurrence during the day, CNEL for seven events is 64.4 dB.

II. Calculations <u>Without</u> Field Noise Measurements

For the seven SENEL events given in Table CNEL-III, the average SENEL is equal to 99.0 dB.

Time	HNL dB	Antilog	Weighting Factor W
0000	71.3	13.48 x 10 ⁶	10
0100	41.0	0.012 "	11
0200	42.2	0.016 "	11
0300	71.9	15.48 "	н
0400	44.0	0.02 "	11
0500	40.7	0.011 "	ła –
0600	75.8	38.01 "	49
0700	79.1	81.28 "	1
0800	80.3	107.15 "	4
0900	78.0	63.09 "	13
1000	74.6	28.84 "	11
1100	78.2	66.06 "	11
1200	79.5	89.12 "	и
1300	83.0	199.52 "	20
1400	75.5	35.48 "	п
1500	77.6	57.54 "	11
1600	70.5	11,22 "	10
1700	70.0	10.00 "	ti .
1800	73.4	21.87 "	н
1900	79.0	79.43 "	3
2000	77.9	61.65 "	11
2100	81.3	134.89 "	u
2200	73.5	22,38 "	10
2300	67.8	6.02 "	61

TABLE CNEL-I EXAMPLE OF CALCULATION FOR CNEL USING HNL

$$TOTAL = 10 \log \left(\frac{253.0 \times 10^6}{24}\right)$$

= 10 log (106.41 X 10⁶)

14.5

ł

ł

ł

CNEL = 80.3 dB

202

ł

٠

4

 $\{\cdot,\cdot\}$

••

I

TIME	EVENT n	SENEL dB	ANTILOG	WEIGHTING FACTOR W
	1	90.0	10.00 x 10 ⁸	l
0700-1900	2	92.0	15.84 "	l
	3	89.0	7.94 "	11
1900-2200	4	105.0	316.22 "	3
1900-1200	5	100.0	100.00 "	3
2200-0700	6	95.0	31.62 "	10
2200-0700	7	99.0	79.43 "	10

TABLE CNEL-II						
EXAMPLE	OF	CALCULATION	FOR	CNEL	USING	SENEL

 $TOTAL = 10 \log \left(\frac{2393.03}{86400} \times 10^8\right)$

= 10 log (276.97 \times 10⁴)

 $CNEL = 64.4 \, dB$

TAB	LE CNEL-III
EXAMPLE OF CAL	CULATION FOR CNEL WITH-
OUT FIELD NOIS	E MEASUREMENTS
SENEL	
dB	ANTILOG
90.0	10.00 x 10 ⁸
92.0	15.84 " "
89.0	7.94 " "
105.0	316.22 " "
100.0	100.00 " "
95.0	31.62 " "
99.0	79.43 " "

1

TOTAL = 10 log $(\frac{561.07}{7} \times 10^8)$ Average (on an energy basis)

SENEL = 99.0 dB

The number of flyovers occurring during the three major divisions of the day are:

 $N_D = 3$ flyovers $N_E = 2$ flyovers $N_N = 2$ flyovers

Then:

 $CNEL = 99.0 + 10 \log [3 + 3(2) + 10 (2)] - 49.4$

 $= 64.2 \, dB$

204

÷

EQUIPMENT

With Field Noise Measurements

- Tape recorder (necessary for single events)
- 2) Sound Level Meter (IEC Standard)

Without Field Noise Measurements

- No equipment per se is necessary. CNEL contours can be drawn using SENEL levels for different classes of aircraft along with proposed volume of operations.
- In the interest of time and money economics, a high speed digital computer is recommended.

REFERENCES

 California Department of Aeronautics, "Noise Standards," California Administrative Code, Chapter 9, Title 4 (Register 70, No. 48, November 28, 1970).

2

TITLE NOISE EXPOSURE FORECAST (NEF)

UNIT (dB like scale)

DEFINITION Noise Exposure Forecast (NEF) is the total summation (on an *energy* basis) over a 24 hour period (weighted for the time of day) of Effective Perceived Noise Level (EPNL)

minus the constant 88 dB. An illustrated approximation of NEF contours for runways at a major airport is shown in Figure NEF-1.

Figure NEF-1 NEF Contours

STANDARDS

(None)

GEOGRAPHICAL USAGE United States

PURPOSE

NEF is used to determine the relative noise impact of aircraft noise near an airport. It serves as a land use planning tool for areas near airports to estimate the effect of various airplane types and operations on the community.

BACKGROUND

The noise exposure forecast uses EPNL as its basic noise measure for aircraft flyovers. EPNL together with the number of operations during the daytime (0700 to 2200) and nighttime (2200 to 0700) provide the information necessary to determine NEF at some specified location. As the number of events increases NEF becomes larger.

Because of the added disturbance of nighttime versus the daytime operations, the noise of each night event effectively increases in the calculation procedure by 10 dB. That is, for the same average number of aircraft operations per hour during the daytime and nighttime periods, the NEF value for nighttime operation would be 10 dB higher than for daytime operations. For ease in determining NEF for known aircraft types, tables and graphs showing EPNL versus distance are available (Ref. 1).

The Noise Exposure Forecasts around a given airport are lowered in absolute value by subtraction of a constant (88) to avoid confusion with CNR, CNEL, etc. An example of NEF contours for a typical airport configuration is shown in Figure NEF-1.

CALCULATION METHOD Calculations With Field Noise Measurements When using field noise measurements with EPNL calculated for each of the noise events, the Noise Exposure Forecast can be found with the following equation: NEF = 10 log $\begin{bmatrix} n \\ \Sigma \\ i=1 \end{bmatrix}$ (EPNL_i/10) + 16.67 $\begin{bmatrix} n \\ \Sigma \\ i=1 \end{bmatrix}$ (EPNL_i/10) = 88 Daytime Nighttime Events [1] Events where: EPNL; is the Effective Perceived Noise Level of event i is the number of events n Calculations Without Field Noise Measurements A) The total noise exposure at a given point is viewed as composed of noise produced by different aircraft flying different flight paths. For a specific class of aircraft, "i", on flight path, "j", the NEF_{ij} can be expressed: NEFij = EPNL 10 log $N_{D_{ij}} + 16.67 (N_{N_i})$) - 88 [2] where: i is aircraft class j is flight path ^N₽_{ij} is number of daytime (0700-2200) events for aircraft class i, flight path j

N _N ij	is number of nighttime (2200-0700)
"ij	events for aircraft class i,
	flight path j

B) The total NEF at a given ground position is determined by summation of all the individual NEF_i values on an *energy* basis.

NEF = 10 log $\Sigma_i \Sigma_j$ antilog (NEF_{ij}/10) [3] Calculations <u>Without</u> Field Noise Measurements

EXAMPLE

A) An example for one NEF_{ij} point using equation [2] is:

Given:

Then:

NEF_{ij} = 90 + 10 log [30 + 16.67 (4)] - 88 = 21.85

B)

Computations showing the calculations involving the total NEF value using equation [3] (i.e., a sum of NEF_{ij} values) is:

209.

Given:
$NEF_{1} = 21.85$
$NEF_2 = 19.71$
$NEF_3 = 23.36$
NEF (total) = 10 log (antilog $\frac{21.85}{10}$
+ antilog $\frac{19.71}{10}$ + antilog $\frac{23.36}{10}$)
NEF (total) = $10 \log (153.1 + 93.5 + 216.8)$
$= 10 \log (463.4)$
= 26.7
<u>With</u> Field Noise Measurements
 Tape recorder (necessary for single events)

- 2) Sound Level Meter (IEC Standard)
- 3) One-third octave band real-time analyzer
- Or, One-third octave band analyzer plus graphic level recorder

EQUIPMENT

210

1111

+));;

Without Field Noise Measurements

- a. No equipment is necessary. NEF contours can be drawn using EPNL levels for different classes of aircraft along with proposed volume of operations.
- b. In the interest of economizing time and money a high speed digital computer is recommended.

REFERENCES

いたい たいたい たいない

- Bishop, Dwight, and Myles A. Simpson, "Noise Exposure Forecast Contours for 1967, 1970 and 1975 Operations at Selected Airports", DOT/FAA Office of Noise Abatement, FA68WA-1900, September 1970, BBN Report No. 1863.
- Bishop, D. E., Richard Horonjeff, "Noise Exposure Forecast Contour Interpretations of Aircraft Noise Tradeoff Studies", DOT/FAA Office of Noise Abatement, BBN Report No. 1714, (May 1969).

TITLE .	WEIGHTED EQUIVALENT CONTINUOUS PERCEIVED Noise Level (Wecpnl)
UNIT	PNdB
DEFINITION	Weighted Equivalent Continuous Perceived Noise Level is the average (on an energy basis) noise level for a 24 hour period. Appropriate weightings are included for time of day and night and season of the year.
STANDARDS	International Civil Aviation Organization, "Aircraft Noise", Annex 16; First Edition, August 1971.
GEOGRAPHICAL USAGE	Limited
PURPOSE	WECPNL is used to determine the relative noise impact of aircraft noise near an airport.

BACKGROUND

「「日本」というというとないます。

WECPNL was adopted by the International Civil Aviation Organization (ICAO) as a reference unit for total noise exposure from aircraft noise. WECPNL uses Effective Perceived Noise Level (EPNL) as its basic noise measure for aircraft flyovers. EPNL for each of the operations during the daytime (0700 to 2200) and nighttime (2200 to 0700) plus monthly temperature values provide the information necessary to determine WECPNL. As the number of events increases WECPNL becomes larger. Because of the added disturbance of nighttime versus the daytime operations, the nighttime portion of the noise is increased by 10 dB.

A seasonal weighting factor based on temperature values is also included to adjust for open windows or *closed* windows.

CALCULATION METHOD In order to calculate WECPNL, first determine Total Noise Exposure Level (TNEL) and then Equivalent Continuous Perceived Noise Level (ECPNL) for the day and nighttime periods.

TOTAL NOISE EXPOSURE LEVEL (TNEL)

TNEL = 10 log $\begin{bmatrix} n \\ \Sigma \\ i=1 \end{bmatrix}$ (EPNL_i/10) + 10 log $\binom{T_0}{t_0}$ [1]

where:

EPNL_i is the Effective Perceived Noise Level of event i n is the number of events T_o is 10 seconds t_o is one second

EQUIVALENT CONTINUOUS PERCEIVED NOISE LEVEL (ECPNL)

 $ECPNL = TNEL - 10 \log (T/t_{o})$ [2]

where:

T is a specified time period, i.e., day, month, or year (usually total time under consideration in seconds)

to is one second

WEIGHTED EQUIVALENT CONTINUOUS PERCEIVED NOISE LEVEL (WECPNL)

WECPNL = 10 log $\left[\frac{5}{8} \text{ antilog } (\text{ECPNL}_{D}/10) + \frac{3}{8} \text{ antilog} \right]$ (ECPNL_N + 10)/10) + 5 [3]

where:

ECPNL	is th	ne ECPI	VL during	the	day-
D	time	hours	0700-220	כ	

- ECPNL_N is the ECPNL during the nighttime hours 2200-0700
 - S is seasonal variations

TABLE V	VECPNL-I
---------	----------

Seasonal Weighting Factor, S	
dB	
Condition	S
Less than 100 hours per month at or above 20°C (68°F)	-5
More than 100 hours per month at or above 20°C and less than 100 hours at or above 25.6°C (78°F)	0
More than 100 hours per month at or above 25.6°C	+5

EXAMPLE

An example of the WECPNL calculation procedure for five flyovers per day during the summer. Given: EPNL₁ = 85 PNdB Daytime

EPNL2	=	90	PNdB	Daytime
EPNL ₃	#	95	PNdB	Daytime
EPNL 4	=	85	PNdB	Nighttime
EPNL ₅	=	90	PNdB	Nighttime

Temperature 80°F for more than 100 hours per month

Then:

ł

$$TNEL_{Day} = 10 \log \left[antilog \frac{85}{10} + antilog \frac{90}{10} + antilog \frac{95}{10} \right] + 10 \log \frac{10}{1}$$

$$= 10 \log (3.162 \times 10^8 + 10.0)$$

$$\times 10^8 + 31.62 \times 10^8 + 10$$

$$= 106.5$$

$$TNEL_{Night} = 10 \log \left[antilog \frac{85}{10} + antilog \frac{90}{10} \right]$$

$$+ 10 \log \frac{10}{1}$$

= 10 log $(3.162 \times 10^8 + 10.0)$

= 101.2

x 10⁸) + 10

$$ECPNL_{D} = 106.5 - 10 \log \left[\frac{15 \times 60 \times 60}{1}\right]$$

= 59.2
$$ECPNL_{N} = 101.2 - 10 \log \left[\frac{9 \times 60 \times 60}{1}\right]$$

= 56.1
$$WECPNL = 10 \log \left[\frac{5}{8} \text{ antilog } \frac{59.2}{10} + \frac{3}{8} \text{ antilog } \frac{56.1 + 10}{10}\right] + 5$$

= 10 log (5.199 + 1.528 × 10⁵) + 5
= 63.3

Thus WECPNL for the 5 flyovers per day during the summar is 63.3 PNdB.

EQUIPMENT

Tape recorder (necessary for single event)
 Sound Level Meter (IEC Standard)

3) One-third octave band real time analyzer

4) Or, One-third octave band analyzer plus graphic level recorder

REFERENCES

International Civil Aviation Organization, "Aircraft Noise", Annex 16; First Edition, August 1971.

TITLE	NOISE POLLUTION LEVEL (NPL) (L _{NP})
UNIT	(None) [dB like units]
DEFINITION	Noise Pollution Level (NPL) is a noise rating which takes into account the equivalent continuous noise level and the effect of the magnitude of the time variation of the noise level.
STANDARDS	(None)
GEOGRAPHICAL USAGE	United Kingdom and United States
PURPOSE	NPL was developed in an effort to improve upon the other single number noise rating systems (in particular Equivalent Sound Level, L_{eq}) which had previously consi- dered only noise intensity. NPL attempts to account for the increased annoyance due to the effect of fluctuations of the environmental noise level.

.

. .

ł

. .

.

,

,

.

218

the second second

.

BACKGROUND

NPL was introduced by Robinson (Reference 1 and 2) in a further effort to combine results from studies on community reaction and noise level. NPL is essentially derived from two terms, the first one is based on the intensity in level of the intruding noise while the second term is influenced by the level or fluctuation in the background noise. Thus, even though two noise sources have the same equivalent sound level, the less steady the level of a noise the greater its disturbing and annoying quality and the greater the NPL.

NPL is measured upon some scale like Alevel or Perceived Noise Level which has been related to subjective evaluations of noisiness. Results from studies using NPL measures have been found to correlate well with existing survey data (Ref. 3). However, additional investigation is recommended to validate the effectiveness of NPL when used directly in a community survey.

CALCULATION METHOD

The basic definition of NPL is given by the following equation:

1) Continuous Integration

$$NPL = L_{eq} + k\sigma \qquad [1]$$

where:

L _{eq}	is Equivalent Continuous Sound Level in A-Level (AL) over a specified period of time (see L _{eq} p.100)	
k	is a constant assuming the value of 2.56, since this value leads to the best fit with currently available studies of subjective response to noise	
σ	is the standard deviation of the time varying sound level over a specified period of time	
2) Tempo	oral Sampling	
NPI	L = L + ko	[2]
where:		
Leq	is equivalent continuous sound level sampled in instantaneous level (i.e., AL _i) over a specific period of time (see L _{eq} p.100)	ed
k	is a constant assuming the value of 2.56	

is the standard deviation of the instantaneous level (i.e., AL_{i}) σ considered as a statistical time series over a specified period of time

:

220

ļ

Ŧ

ļ

i

i.

...........

ł

$$\sigma = \sqrt{\frac{\Sigma (\Sigma - L)^2}{N}} = \sqrt{\frac{N \Sigma L^2 - (\Sigma L)^2}{N^2}}$$

L is instantaneous level for sample i

3) An alternate expression for NPL is:

NPL' =
$$L_{50} + d + (d^2/60)$$
 [3]

where:

EXAMPLE

....

NPL using the approximation method of temporal sampling in equation [2] is as follows:

Given:

 $AL_1 = 67 \text{ dB}(A)$ $AL_2 = 74 \text{ dB}(A)$ $AL_3 = 76 \text{ dB}(A)$

Then:

$$L_{eq} = 10 \log \left[\frac{\operatorname{antilog} \frac{67}{10} + \operatorname{antilog} \frac{74}{10} + \operatorname{antilog} \frac{76}{10}}{3} \right]$$

$$= 10 \log \left[\frac{5 \cdot 01 + 25 \cdot 12 + 39 \cdot 81}{3} \right]$$

$$= 73.7$$

$$\overline{L} = \frac{67 + 74 + 76}{3} = 72.33$$

$$\sigma = \sqrt{\frac{(72 \cdot 33 - 67)^2 + (72 \cdot 33 - 74)^2 + (72 \cdot 33 - 76)^2}{3}}$$

$$= 3.86$$

$$NPL = 73.7 + 2.56 (3.86)$$

$$= 83.6$$

Thus NPL for the three sound level samples in time is 83.6.

EQUIPMENT

- 1) Sound Level Meter (IEC Standard)
- Continuous Integration: special monitoring equipment capable of integrating sound levels for specified duration
- Digital computer with sampling capabilities (optional)
- 4) Statistical distribution analyzer may be employed which contains approximate formulas listed under the calculation method

REFERENCES

- Robinson, D. W., "The Concept of Noise Pollution Level", NPL Aero Report Ac38, National Physical Laboratory, Aerodynamics Division, March 1969.
- Robinson, D. W., "An Outline Guide to Criteria for the Limitation of Urban Noise", NPL Aero Report Ac39, March 1969, National Physical Laboratory, Aerodynamics Division, Teddington, England.
- Robinson, D. W., Towards a Unified System of Noise Assessment, J. Sound Vibration <u>14</u>, 279-98 (1971).

DAY-NIGHT LEVEL (Ldn) TITLE UNIT đB DEFINITION Day-Night Level (Ldn) is the average (i.e., on an energy basis) A-weighted noise level integrated over a 24 hour period. Appropriate weightings are applied for the noise levels occurring in the daytime and nighttime periods. STANDARDS (None) GEOGRAPHICAL USAGE United States The purpose of L_{dn} is to provide a single PURPOSE

POSE The purpose of L_{dn} is to provide a single number measure of time-varying noise for a specified time period. It was developed for noise exposure surveillance and as an aid in land use planning.

BACKGROUND

Day-Night Level (Ldn) was developed as a single number measure of community noise exposure. It was designed to improve upon Equivalent Sound Level $(L_{e\sigma})$ by adding, a correction for nighttime noise intrusions. A 10 dB correction is applied to nighttime (2200-0700) sound levels to account for the increased annoyance to noise during the night hours. L_{dn} uses the same energy equivalent concept as Leg, which is defined as representing a fluctuating noise level in terms of a steady state noise having the same energy content. The specified time integration period is for 24 hours. Again, like L_{eq} there is no stipulation of a minimum noise sampling threshold.

The noise level is measured in A-weighted sound pressure level. However, other weighting functions may be better for evaluating the effects of noise on human annoyance (i.e., D-level).

L_{dn} was not designed as a single source measure, and therefore it does not account adequately for tonal components or impulse noise. It is recommended that this measure not be used in determining source standards or for certification of product noise. Essentially, Day-Night Level was

introduced as a simple method for predicting the effects on a population of the average long term exposure to environmental noise.

Recommended L_{dn} levels of 55 to 60 dB are projected as the long range goal for maximum permissible average sound level with respect to health and welfare. Results from test data indicated that an outdoor L_{dn} of approximately 60 dB or less is required in order that no more than 23% of the population exposed to noise would be highly annoyed.

CALCULATION METHOD

 L_{dn} can be determined by two different methods.

1) CONTINUOUS INTEGRATION

For continuous time integration of Aweighted sound level for a 24 hour period (86400 seconds), the formula is:

$$L_{dn} = 10 \log \left[\frac{o^{f^{86400}} w [t] \cdot antilog (AL[t]/10) dt}{86400} \right] [1]$$
where:

w is the time of day weighting factor

WEIGHTING	TIME
1	0700 - 2200
10	2200 - 0700

t is time in seconds AL[t] is instantaneous A-level at time t dt is Δt as it approaches 0 86400 is the number of seconds in a day

2) TEMPORAL SAMPLING

For discrete sampling of A-weighted sound level for a 24 hour time period, the formula is:

$$L_{dn} = 10 \log \begin{bmatrix} n \\ \Sigma & w_i & \text{antilog } (AL_i/10) \\ \underbrace{i=1}{n} \end{bmatrix}$$
[2]

where:

- w_i is the time of day weighting factor
 (see equation [1]) for sample i
- AL_i is the A-level for sample i (for sounds with time varying fluctuations use L_{eg})
 - n is the number of samples of AL in a 24 hour period (or L_{eq} for specified periods of time within 24 hours)

EXAMPLE

£

ţ

马马士子 副子子 机制

The following example illustrates one method of determining L_{dn} . These three samples are Equivalent Sound Level (L_{eq}) over specified time periods.

1
TEMPORAL SAMPLING (for 24 hours)

TABLE L_{dn}-I

dn				
TIME	n	Leq (dB)	ANTILOG	WEIGHTING FACTOR W
0700-1000	1	71	12.0 x 10 ⁶	1
1000-1300	2	75	31.0 " "	
1300-1600	3	70	10.0 " "	
1600-1900	4	73	20.0 " "	"
1900-2200	5	70	10.0 " "	
2200-0100	6	70	10.0 " "	10
0100-0400	7	65	3.2 " "	
0400-0700	8	68	6.3 " "	**

EXAMPLE OF CALCULATION FOR Lan

Table L_{dn}-I gives the measured L_{eq} for eight 3-hour samples during a 24 hour period. The weighting factors for time of day and night have been applied and the Day-Night Sound Level is:

TOTAL = 10 log
$$\left[\frac{278.0 \times 10^6}{8}\right]$$

= 10 log (34.75 × 10⁶)

 $L_{dn} = 75.4 \text{ dB}$

EQUIPMENT

Continuous Sampling: Special monitoring equipment capable of integrating sound levels for long periods of time

Temporal Sampling

- a. Sound Level Meter (IEC Standard)
- b. Graphic level recorder
- c. Tape recorder
- d. Statistical distribution analyzer

REFERENCES

ĥ

 von Gierke, Henning, Draft Report on Impact Characterization of Noise Inducing Implications of Identifying and Achieving Levels of Cumulative Noise Exposure, Environmental Protection Agency (EPA), Aircraft/Airport Noise Report Study, June 1, 1973, Task Group 3.

TITLE

ISOPSOPHIC INDEX (N)

UNIT

PNdB

DEFINITION

The Isopsophic Index (N) is an aircraft noise rating measure based upon the average (on an *energy* basis) maximum Perceived Noise Level (\overline{PNL}_{max}) of a flyover. It takes into account the number of events and appropriate weightings for time of day, evening or night.

Another French measure, termed the Classification Index, R, is identical in all respects to N. It is also used in land use planning and in attempts to predict people's annoyance with noise exposure.

STANDARDS

(None)

GEOGRAPHICAL USAGE

France

PURPOSE

N is used to determine the relative noise impact of aircraft noise near an airport. It serves as a land use planning tool for areas near airports.

BACKGROUND

The French conducted an extensive social survey in the community areas around their four major airports. The results from the survey were used to derive two attitude scales, one a nuisance scale related to aircraft noise, and the other a general satisfaction scale related to the district of residence. The correlation between the rating of the nuisance scale and the degree of noise exposure as a function of N was 0.93.

When night operations are considered in the Isopsophic Index the nighttime hours are divided into two periods (2000-0200) and (0200-0600) with weighting factors applied to each period much like CNEL. The first night period is viewed as 3 times more significant than the second nighttime period. The 10 log summation is no longer used, the term being replaced by 6 log $(3n_1+n_2)$ -1 where n_1 and n_2 are the number of operations in the two nighttime periods. However, a direct 10 log summation process can be used when $3n_1+n_2<64$. There is a simple linear translation of N to Composite Noise Rating (CNR) where N~CNR-18.

As a result of their work with Isopsophic Index, the French have established areas for land use on the basis of the noise exposure.

Land Planning Zones

- AREA A N>96 All buildings prohibited (CNR>114) All buildings prohibited to activities associated with the vicinity of the airport.
- AREA B 89<N<96 Development of existing communities to be restricted (107<CNR<114) to areas located within the smallest possible perimeters. Construction for residential purposes will be authorized subject to adequate soundproofing. Density limitations (number of inhabitants to the hectare) will also be esta-blished for this type of residential area. Erection of public buildings (i.e., schools, hospitals, etc.) and residential buildings should be avoided. Should the erec-tion of such public buildings be considered essential, soundproofing should conform to at least a certain given value and each case should be studied specifically.
- AREA C 84<N<89 New residential developments (102<CNR<107) New residential developments to be avoided. Density limitations (number of inhabitants per hectare) will be established for all residential buildings and it will be recommended that such residential buildings as well as public building be provided with adequate soundproofing, each case being studied specifically.

AREA D N<84 No building restrictions. (CNR<102)

CALCULATION METHOD

- 111-**-** 101

The Isopsophic Index can be computed from the following equations:

FOR DAYTIME OPERATIONS (0600-2200) N_{day} = PNL_{max} + 10 log N-30 [1]

where:

PNL is the average (on an *energy* basis) of maximum PNL's

N is the number of events during the daytime (0600-2200)

FOR NIGHTTIME OPERATIONS (2200-0600)

 $N_{\text{night}} = \overline{PNL}_{\text{max}} + 6 \log (3n_1 + n_2) - 31 [2]$

where:

PNL
maxis the average (on an energy
basis) of maximum PNL's

n₁ in the number of events during early night (2200-0200)

n2 is the number of events during late night (0200-0600)

FOR THE 24 HOUR PERIOD

 $N = 10 \log [antilog (N_{day}/10) + antilog (N_{night}/10)] [3]$ EXAMPLE Given: PNL_{max} = 85 Daytime (0600-2200) $PNL_{max_2} = 90$ H PNL = 95 " PNL_{max4} = 90 Nighttime (2200-0200) $PNL_{max_5} = 95$ н PNL = 85 " (0200-0600) $PNL_{max_7} = 90$ " Thus for Daytime: $\overline{PNE}_{max} = 10 \log \left[\frac{\text{antilog } \frac{85}{10} + \text{antilog } \frac{90}{10} + \text{antilog } \frac{95}{10}}{3} \right]$ = 91.7 = $\left[\frac{3.162 \times 10^8 + 10 \times 10^8 + 31.62 \times 10^8}{3}\right]$ N_{day} = 91.7 + 10 log 3 - 30 = 91.7 + 4.8 - 30= 66.5

For Nighttime:FML_max= 10 log
$$\frac{10 \times 10^8 + 31.62 \times 10^8 + 3.162 \times 10^8 + 10 \times 10^8}{16}$$
 $= 91.4 = \left[10 \times 10^8 + 31.62 \times 10^8 + 3.162 \times 10^8 + 10 \times 10^8 \right]$ $\mu_{night} = 91.4 + 6 \log (3 \times 2 + 2) - 31$ $= 91.4 + 5.41 - 31$ $= 65.8$ FOR 24 Hour Period $H = 10 \log \left[antilog (\frac{66.5}{10}) + antilog (\frac{55.8}{10}) \right]$ $= 69.2 \text{ PNGB}$ EQUIPMENT1) Tape recorder (necessary for single event)3 Sound Level Meter (IEC Standard)3 One-third octave band real time analyzerO', One-third octave band real time analyzerSound Level Meter (IEC Standard)3 One-third octave band real time analyzerO', One-third octave band real time analyzerSound Level Meter (IEC Standard)3 One-third octave band real time analyzerO', One-third octave band real time analyzerO', One-third octave band neal-time, Foreitation, of Surveys with the Determination of Noise Arates, Moise 1969-WP/15, Item 2, Paper No. 2, 6 August 1970).

.

•

.

•

TITLE	mean annoyance level (ζ)
UNIT	đB
DEFINITION	The Mean Annoyance Level (\overline{Q}) is the average (on an <i>energy</i> basis) noise level measured in A-level for a specified time period.
GEOGRAPHICAL USAGE	Germany and Austria
PURPCSE	The \overline{Q} index as a rating of noise impact is used in Germany to define four zones of aircraft noise exposure for land use. The Austrians adapted the \overline{Q} index to measure noise fluctuations in homes and office buildings.

BACKGROUND

Germany

The Mean Annoyance Level (\overline{Q}) in Germany was developed for assessing aircraft noise and land use around airports. The four zones around an airport which define land use for occupants are based on a *critical* value of \overline{Q} equal to the noise level of 82 PNdB.

Land Planning Zones

Zone I	<u>0</u> >82	Nonresidential building, uninhabitable.
Zone II	77< <u>Q</u> <82	Residential building only in urgent cases (i.e., for airport personnel). Strong sound suppression measures are required.
Zone III	72 <q<77< td=""><td>Not recommended for resi- dences. Sound suppression measures required if dwellings must be built here.</td></q<77<>	Not recommended for resi- dences. Sound suppression measures required if dwellings must be built here.
Zone IV	Q<72	No restrictions, but no new hospitals, rest homes, homes for the aged, schools churches, or scientific institutions may be built in the vicinity of the boundary to Zone III.

<u>Austria</u>

1

The \overline{Q} index value adapted by the Austrians is based upon the *percentage* of time the noise is at a certain level. The concern

here is with the habitability of dwellings, office buildings and educational institutions in areas where there is influence from traffic noise.

CALCULATION METHOD Germany

The Mean Annoyance Level (\overline{Q}) used in Germany is the summation of various noise level samples multiplied by their respective durations (τ), then averaged over a specified time (T), with the result being multiplied by a constant. The constant in this case is 13.3 which corresponds to 4 dB increase per doubling of duration.

The expression for computing \overline{Q} is as follows:

$$\overline{Q} = 13.3 \log \left[\frac{\Sigma \text{ antilog } (AL_i/13.3)}{\frac{i=1}{T}} \cdot \tau_i \right] [1]$$

where:

- AL_i is the sound level for each sample i (or PNdB may be used)
- τ_{i} is the duration at that level for sample i
- T is the specified time which may be 1 hour, 12 hours, etc.
- n is the number of samples

Austria

The \overline{Q} index as used in Austria is the summation of sampled A-level, multiplied by the percentage of time that level is maintained within a total specified time period. A constant is used (13.3) which corresponds to 4 dB increase per doubling of duration.

The expression for computing the \overline{Q} index is as follows:

$$\bar{Q} = 13.3 \log \begin{bmatrix} n \\ \Sigma \text{ antilog } (AL_k/13.3) \\ \frac{k=1}{100} & f_k \end{bmatrix} [2]$$

where:

- AL_{k.} is the sound level in dB(A) defining each class (k) in the statistical distribution of observed noise levels
- fk is the percentage of time the noise level is in class k
- n is the number of classes

Germany

For the example given in Table \overline{Q} -I, A-level has been sampled at one hour intervals for a total period of 12 hours. However, for areas which have a great many aircraft

EXAMPLE

.

£

1111

h C

239'

flyovers the sampling interval τ would be much shorter (i.e., approximately 1 second).

Thus for five samples of varying durations the \overline{Q} index is 76.9 dB. This indicates a Zone III recommendation for land usage.

Austria

Table \overline{Q} -II gives an example for the Austrian \overline{Q} index. The sampled A-level is divided into class intervals with the respective percentage of time the level is maintained in each of the five intervals.

The \overline{Q} index for this method is 76.9 dB, the same as the measurement procedure from Germany.

t

EQUIPMENT

÷

- 1) 'Sound Level Meter (IEC Standard)
- 2) Tape Recorder (optional)
- Digital Computer (preferably)
 Or, Graphic Level Recorder

i

EXAMPLE OF CALCULATION FOR MEAN ANNOYANCE LEVEL $\langle\overline{\Omega}\rangle$ (for a 12 hour period)

Sample	A-Level dB	τ Duration Hours	Antilog
1	70.0	4	7.33 X 10 ⁵
2	75.0	2	8.71 "
3	80.0	3	31.05 "
4	85.0	1	24.60 "
5	65.0	$\frac{2}{12}$ Hrs.	1.54 "

ŝ

ようなない、いてんい、いたんないをきたななないというのかないないというです。

1

.

ł

GERMANY	

TOTAL = 13.3 log $(\frac{73.24 \times 10^5}{12})$

= 13.3 (5.78)

 $\overline{Q} = 76.9 \text{ dB}$

TABLE Q-II

EXAMPLES OF CALCULATIONS FOR MEAN ANNOYANCE LEVEL (\overline{Q}) (for a 12 hour period)

AUSTRIA	

Sample	Hours Sampled	Percent Time %	Class Interval dB(A)	Antilog
1	4	33	70.0	6.04 X 10 ⁶
2	2	17	75.0	7.40 "
3	3	25	80.0	25.88 "
4	1	8	85.0	19.68 "
5	$\frac{2}{12}$ Hr.	17 100%	65.0	1.31 "

 $TOTAL = 13.3 \log \left(\frac{60.32 \times 10^6}{100}\right)$

= 13.3 (5.78)

 $\overline{Q} = 76.9 \text{ dB}$

REFERENCES

- Bruckmayer, F., "Beurteilung von Larmbelastigung durch Bezug auf den Storpegel", (Judgment of Noise Annoyance by Comparison with the 'Background Noise Level') Osterreichische Ingenieur-Zeitschrift, Jg. 1963, p. 315. Also Paper L-16 in IVth International Congress on Acoustics, Copenhagen, August 21-28, 1962.
- Bruckmayer, F., and J. Lang, "Storung durch Verkehslarm in Unterrichtsraumen" (Disturbance Due to Traffic Noise in Schoolrooms), Osterreichische Ingenieur-Zeitschrift, II (3): 73-77 (1968).
- 3. Koppe, E. W., K. R. Matschat and E. A. Muller, "Abstract of a Procedure for the Description and Assessment of Aircraft Noise in the Vicinity of an Airport", Acustica <u>16</u>: 251-253 (1965/66).
- Lang, Judith, "Verkehrslarm Messung and Darstellung" ("Measurement and Presentation of Traffic Noise"), Fifth International Congress on Acoustics, Liege, (7-14 September 1965), paper F-35.

TITLE NOISINESS INDEX (\overline{NI}) UNIT (dB like scale) DEFINITION The Noisiness Index, \overline{NI} , is the average (on an *energy* basis) noise level based upon a tone corrected A-level for a 24 hour period. Appropriate corrections are applied for time of day, or night, and season of the year. STANDARDS (None) GEOGRAPHICAL USAGE South Africa PURPOSE The $\overline{\text{NI}}$ rating scheme is another measure used to relate community response to aircraft noise exposure.

244

BACKGROUND

うちもう とういう ほけいしかんもうりう ひざい へいどう

Van Niekerk and Muller studied the noise exposure from aircraft flyovers in South Africa and developed the Noisiness Index (\overline{NI}) . The Noisiness Index is the integrated tone corrected A-level with effective duration of that level for a twentyfour hour period. Because of this integration process, \overline{NI} takes into consideration both the duration as well as the magnitude of the noise signal. Additional corrections were introduced to adjust for day, evening, or night hours, or for various seasons of the year.

Measurement and analysis of the noise is done in one-third octave band frequencies. The tone corrections are added to the third-octave band data before calculating A-level. The actual tone correction procedure is taken from the techniques employed for Effective Perceived Noise Level (EPNL) or tone corrected Perceived Noise Level (PNLT). The effective duration is the duration of an equivalent energy sample with the same maximum level.

The National Institute for Personnel Research of the South African Council for Scientific and Industrial Research conducted a social survey to relate community response to aircraft noise exposure. The results indicated that about 13% of the

people were disturbed by aircraft noise at an NI value of 60, about 18% at $\overline{\text{NI}}$ of 65, and about 45% were disturbed at an $\overline{\text{NI}}$ of 70. The $\overline{\text{NI}}$ range between 65 and 70 is thus regarded as the upper limits in setting noise criteria for a residential development.

CALCULATION METHOD

NI may be determined using the following formula:

$$\overline{NI} = 10 \log \frac{n}{\sum_{i=1}^{\infty} \operatorname{antilog}} \left[\frac{AL_{T} + 10 \log (t/t_{o}) + C + S}{10} \right] \quad [1]$$

where:

- AL_T is tone corrected A-level from onethird octave band data. The procedure for determining tone corrected A-level to the same as that for tone corrected Perceived Noise Level (PNLT see p. 86).
 - t is effective duration in seconds
 - t_{o} is total time in seconds
 - C is the time of day correction
 - S is the seasonal correction

EFFECTIVE DURATION (t)

1) Continuous Integration

$$t = \left[\frac{1}{\operatorname{antilog} (AL_{\max}/10)}\right] t_{1}^{t_{2}} \operatorname{antilog} (AL(t)/10) dt \qquad [2]$$

where: AL max is maximum A-level t₂ t_1^f brackets the time during which the noise signal is within a minimum of $1\overline{0}$ dB(A) down from the maximum value (AL max) dt is Δt as it approaches 0 AL(t) is A-level as a function of time 2) Temporal Sampling $t \simeq \sum_{i=1}^{n} \left[\text{antilog (AL_i/10) } \Delta t/\text{antilog (AL_{max}/10)} \right]$ [3] where: is the instantaneous A-level for AL_i sample i Δŧ is the time interval between samples in seconds n is the number of samples for which the noise is within a minimum of 10 dB(A) down from its maximum AL_i EXAMPLE An example of the \overline{NI} calculation procedure is as follows for a 24 hour time period (86400 seconds) during a season where the temperature is 80°F for more than 100 hours per month.

247

i

TABLE NI-I

SUGGESTED VALUES FOR THE DIURNAL WEIGHTING FACTOR C (IN dB)

Time of day (hours)	°2	C3
0700 - 2200	0	
2200 - 0700	10	
0700 - 1900		C.
1900 - 2200		5
2200 - 0700		10

<u>Note</u>: $C = C_2$ if the day is divided into two periods, and $C = C_3$ if the day is divided into three periods.

TABLE NI-II

SUGGESTED VALUES FOR THE SEASONAL WEIGHTING FACTOR S (IN dB)

.

.

100 10

Seasonal Condition	S
Less than 100 hours per month at or above 20 ⁰ C	-5
More than 100 hours per month at or above 20°C and less than 100 hours at or above 25.6°C	0
More than 100 hours per month at or above 25.6°C	+5

249

;

AL_T (Tone corrected A-level)

The appropriate tone corrections have been applied to the spectrum listed in Table $\overline{\text{NI}}$ -III according to the procedure outlined in the measure for PNLT (see p. 86). Thus, AL_{π} equals 91.6 dB.

t (effective duration)

Approximate effective duration has been calculated in Table $\overline{\text{NI}}$ -IV. Thus, for a .5 second interval sampling of the spectrum given in Table $\overline{\text{NI}}$ -III the effective duration is t = 3.7 seconds.

NT (Noisiness Index)

Using the answers calculated for AL_T and t from above, along with the respective information for some additional samples the Noisiness Index is determined as follows:

OA	Flyover* Spectrum (dB)	Tone* Correction	Tone Corrected Spectrum	Correction For A-weighting	Corrected Level dB	Antilog	
80	70.0		70.0	-22.5	47.5	0.05 X 10	6
100	62.0		62.0	-19.1	42.9	0.02 "	
125	70.0		70.0	-16.1	53.9	0.25 "	
160	80.0		80.0	-13.4	66.6	4.57 "	
200	82.0		82.0	-10.9	71.1	12.88 "	
250	83.0	0.7	83.7	- 8.6	75.1	32.36 "	
315	76.0		76.0	- 6.6	69.4	8,71 "	
400	80.0		80.0	- 4.8	75.2	33.11 "	
500	80.0		80.0	- 3.2	76.8	47.86 "	
630	79.0		79.0	- 1.9	77.1	51.29 "	ł
800	78.0		78.0	- 0.8	77.2	52.48 "	[
1000	80.0		80.0	0.0	80.0	100.00 "	
1250	78.0		78.0	0.6	78.6	72.44 "	
1600	76.0		76.0	1.0	77.0	50.12 "	
2000	79.0		79.0	1.2	80.2	104,71 "	
2500	85.0	2.0	87.0	1.3	88.3	676.08 "	
3150	79.0		79.0	1,2	80.2	104.71 "	
4000	78.0		78.0	1.0	79.0	79.43 "	
5000	71.0		71.0	0.5	71.5	14.13 "	
6300	60.0		60.0	-0.1	59.9	0,98 "	
8000	54.0		54.0	-1.1	52.9	0.19 "	
10000	45.0		45.0	-2.5	42.5	0.02 "	

TABLE $\overline{\text{NI}}$ -III EXAMPLE OF CALCULATIONS FOR TONE CORRECTED A-LEVEL (AL_T)

*From example on Page PNLT-7

and a construction of the second s

TOTAL = 10 LOG (1446.41 X 10^6) = 10 (9.16) AL_T = 91.6 dB AL = 90.8

25 L

Section Contraction

.

Time (Sec.)	A-level dB(A)	Antilog
9.5	76.3	4.27 X 10 ⁷
10.0	75.4	3.47 "
10.5	77.0	5.01 "
11.0	80.6	11.48 "
11.5	83.2	20.89 "
12.0	85.5	35.48 "
12.5	87.8	60.26 "
13.0	89.1	81,28 "
13.5	90.5	112.20 "
14.0	90.8	120.23 "
14.5	90.7	117.49 "
15.0	89.8	95.50 "
15.5	88.1	64.57 "
16.0	86.8	47.86 "
16.5	85.5	35.48 "
17.0	83.9	24.55 "
17.5	82.3	16.98 "
18.0	81.1	12.88 "
18.5	79.3	8.51 "
19.0	78.9	7.76 "
19.5	77.7	5.89 "
20.0	75.7	3.72 "

TABLE NI-IV EXAMPLE OF CALCULATIONS FOR EFFECTIVE DURATION (t)

 $TOTAL = (\frac{895.76 \times 10^7}{120.23 \times 10^7} \times 0.5$

t = 3.7 sec.

.

4

.

÷

.

٠

And the second

AL _{T1}		90.6*	t = 3.7* sec. Daytime
AL _{T2}	=	95.7	t = 5.2 sec. Daytime
AL _{T3}	=	87.9	t = 2.8 sec. Evening
AL _T 4	=	93.3	t = 4.3 sec. Night
AL _{T5}	8	85.4	t = 2.2 sec. Night

*From calculations above

Then:

$$NT = 10 \log \left[\operatorname{antilog} \frac{90.6 + 10 \log (3.7/86400) + 0 + 5}{10} + \frac{10}{10} + \frac{10$$

 $\overline{\text{NI}}$ = 67.1

253

* * *

Thus, the Noisiness Index (\overline{NI}) for five flyovers during the summer is $\overline{NI} = 67.1$, which puts it in the marginal region for residential acceptability.

EQUIPMENT

- 1) Tape recorder
- 2) Sound level meter (IEC Standard)
- One-third octave band real time analyzer
- 4) Or, Graphic level recorder
- Digital computer with sampling capability (optional)
- 6) Continuous Integration Special monitoring equipment capable of integrating sound levels for a specified duration

REFERENCES

- Galloway, William J., Dwight Bishop, "Noise Exposure Forecasts: Evolution, Evaluation, Extensions and Land Use Interpretations", DOT-FAA Office of Noise Abatement, BBN Report No. 1862, (August 1970).
- van Niekerk, C. G., and Muller, J. L., "Assessment of Aircraft Noise Disturbance," J. R. Ae. Soc. <u>73</u>, 383-396 (1969).

TITLE TOTAL NOISE LOAD (B)

(None)

UNIT

DEFINITION

The Total Noise Load (B) is the average (on an *energy* basis) noise level measured in A-level. Appropriate corrections are made for number of aircraft flyovers and for the time of day. B is numerically equal to the "mean relative nuisance" percentage.

STANDARDS (None)

GEOGRAPHICAL USAGE Netherlands

PURPOSE Total Noise Load is used to determine the relative noise impact of aircraft noise near an airport.

Preceding page blank

BACKGROUND

Total Noise Load was developed following an extensive study done by the Committee on Noise Nuisance of the Netherlands. One thousand interviews were done in the communities surrounding the airport in Amsterdam resulting in a "mean relative nuisance" scale. Physical measurements of noise produced by about 1000 aircraft flyovers were also obtained to establish the noise exposure in the communities.

The Dutch scientists then developed a concept which combined the number of events with the respective A-levels. The resulting expression places a different emphasis on the effect of the variations in level or number of aircraft as compared to the other community measures.

The Total Noise Load is the number equal to the percentage of "mean relative nuisance" obtained in the Dutch social survey. The Dutch authorities have chosen a B rating of 45 as the "limit of admissibility" which is equal to a 45% "mean relative nuisance" score.

CALCULATION METHOD

......

The equation for the Total Noise Load is as follows:

.

$$B = 20 \log \left[\begin{array}{c} n \\ \Sigma w \\ i = 1 \end{array} \right] - C \quad [1]$$

where:

C is 157 for noise measurements made for 1 year

is 106 for noise measurements made for 1 day

 AL_i is the A-level for event i

w is the time of day weighting factor

n is the number of events

TABLE B-I HOURLY WEIGHTING FACTOR

Time	Weighting Factor w
0000-0600	10
0600-0700	8
0700-0800	4
0800-1800	1
1800-1900	2
1900-2000	3
2000-2100	4
2100-2200	6
2200-2300	8
2300-2400	10

EXAMPLE

The example of calculations for the Total Noise Load (B) for eight flyovers during the time period of one day is shown in Table B-II. A B of 50.6 for the flyovers is equivalent to the 50% "mean relative nuisance" score.

- 1) Sound Level Meter (IEC Standard)
- 2) Tape recorder (optional)
- 3) Digital computer Or, Graphic level recorder
- 1. Bitter, C., "La Gene due au Bruit des Avions" ("Disturbance Due to Airplane Noise"), presented at a Colloquium on the Definition of Human Requirements with Regard to Noise, 18 & 19 November 1968, Paris; published in Revue d'Acoustique, <u>3</u> (10): 88-96 (1970).
- Schultz, Theodore J., "Technical Background for Noise Abatement in HUD's Operating Programs", for U. S. Department of Housing and Urban Development, BBN Report No. 2005, (September 1970).

REFERENCES

111

EQUIPMENT

Time	Events (in AL _{max})	Antilog	Weighting Factor
0000-0100	None		10
0100-0200			11
0200-0300	n		11
0300-0400	11		t 0
0400-0500			U.
0500~0600	80.0	2.15 X 10 ⁵	1 B
	95.0	21.54 "	11
	98.0	34.14 "	n
0600-0700	None		8
0700-0800	j n		4
0800-0900) n		1
0900-1000			11
· 1000-1100) H		18
1100-1200	85.0	4.64 X 10 ⁵	a
1200-1300	93.0	15.84 "	14
1300-1400	None		14
1400-1500	{ u		0
1500-1600	H H		
1600-1700	95.0	21.54 X 10 ⁵	н
	99.0	39.81 "	n
1700-1800	None		11
1800-1900			2
1900-2000			3
2000-2100	85.0	4.64 x 10 ⁵	4
2100-2200	None		6
2200-2300			8
2300-2400			10

TABLE B-II

EXAMPLE OF CALCULATION FOR TOTAL NOISE LOAD FOR 1 DAY

TOTAL = 20 LOG (67.88 \times 10⁶) -106.0 = 156.63 - 106.0

B = 50.6

250

ï

÷.

TITLE

RATING SOUND LEVEL (L_)

dB

UNIT

DEFINITION

Rating Sound Level (L_r) is a procedure that provides a numerical value for sounds of different spectral and temporal parameters using corrected A-level or equivalent A-weighted sound level (L_{eq}) . The assessed L_r for the intruding noise is compared with a Noise Criterion which takes various environmental features into account.

STANDARDS

International Organization of Standardization. Draft ISO Recommendation No. 1996 -Noise Assessment with Respect to Community Response (Document ISO/TC 43 (Secretariat -452) 529 E).

GEOGRAPHICAL USAGE United Kingdom

PURPOSE

 L_r is always used in conjunction with a Noise Criterion as specified in ISO 1996. Together they provide a means of assessing the impact of noise on a community.

Preceding page blank

BACKGROUND

The Rating Sound Level (L_r) and the Noise Criterion are used together in an effort to refine predictions of community response to an intruding sound. L_r uses A-level or L_{eq} depending on the fluctuating characteristics of the sound. A correction term is added to these measures to account for impulse noise, tonal content, and duration of the noise. (Table L_r -I).

Noise Rating (NR) curves (see p.271) or Composite Noise Rating (CNR) (see p.184) methods are employed when the sound pressure levels are measured in one-third or octave band frequencies instead of A-level.

The Noise Criterion is used with L_r as a means of describing projected community response. The basic noise criteria itself is related to the pre-existing background level which should be established according to the living habits of the people of the community in question. It has been suggested for residential areas that a suitable background criteria is in the 35-45 dB(A) range. Correction terms for time of day (Table L_r -II) and for different zoning specifications (Table L_r -III) are applied to the basic noise criteria.

The community reaction to a noise source is approximated by the amount that the Rating Sound Level (L_r) exceeds the Noise Criterion.

TABLE L_r-I

CORRECTIONS TO THE MEASURED SOUND LEVEL IN dB(A)

Character	Correction dB(A)	
Peak factor	impulated noise (c.g. from hammering)	+ 5
Spectrum character	Audible tone components (e.g. whine) present	+ 5
Duration of the noise with sound level LA as a percentage of the relevant time period	Between: 100 and 56 56 and 18 18 and 6 6 and 1,8 1.8 and 0,6 0.6 and 0.2 Less than 0,2	$ \begin{array}{c} 0 \\ -5 \\ -10 \\ -15 \\ -20 \\ -25 \\ -30 \end{array} $

TABLE L_-II

CORRECTIONS TO BASIC CRITERION FOR DIFFERENT TIMES OF DAY

Time of day	Correction to basic criterion	
·	dB (A)	
Daytime	0	
Evening	-5	
Nighttime	-10 to -15	

如此是是是我的是我的是我们就是我们们就是我们们就能够出了。"他说道:"你们们们就能让你们们的是我们的?"他们们的,你们们们就是我们们是你的事?"他,她们们的话,

the **a**nd and the

265
TABLE L_r-III

CORRECTIONS TO BASIC CRITERION FOR RESIDENTIAL PREMISES IN DIFFERENT ZONES

Type of district	Correction to basic criterion dB(A)	
Rural residential, zones of hospitals, recreation	. 0	
Suburban residential, little road traffic	+ 5	
Urban residențial	+ 10	
Residential urban with some workshops or with husiness, or with main roads	+15	
City (business, trade, administration)	+ 20	
Predominantly industrial area (heavy industry)	+ 25	

:

.

CALCULATION METHOD

ł

1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

もやしませいもの発売に行いたが、

Rating Sound Level

The Rating Sound Level (L_r) for most types of sounds can be determined from the following formulas:

- a) Impulsive Noise or Tones $L_r = L_A + correction^*$
- b) Noises of Fluctuating Level L_r = L_{eg} + correction*

*Refer to Table L_r-I

Noise Criteria Procedure

After choosing the basic Noise Criterion according to the zoning definition for a specified community (i.e., $35-45 \ dB(A)$ for a residential area), the corrections for time of day and type of district (Table L_r -II and III respectively) are applied.

Community Response

Community response to the intruding noise is then categorically estimated in Table L_r -IV by the amount that the Rating Sound Level exceeds the Noise Criterion.

TABLE L_r-IV

ESTIMATED COMMUNITY RESPONSE TO NOISE

Aniount in $dB(A)$ by which the rating sound level L_r exceeds the noise criterion	Estimated community response.			
	Calegory	Description		
0	None	No observed reaction		
5	Little	Sporadic complaints		
10	Medium	Widespread complaints		
15	Strong	Threats of community action		
20	Very strong	Vigorous community action		

į

EXAMPLE

The Rating Sound Level measure (L_r) and the Noise Criterion are used together to assess estimated community reaction during the evening hours for the following model urban residential district with these specified noise sources:

Noise Source	dB	Description
Transformer	45 dB(A)	Continuous steady state with tonal components
Industrial	60 dB(A)	Includes both im- pulsive and audible tone components occurring about 10% of the time
Traffic	45 dB(A)	Fluctuating noise measured in L _{eq}

Evaluate L_r

```
Transformer Noise

(audible tone + steady state)*

L_r = 45 + 5

= 50 \text{ dB}(A)

Industrial Noise

(tone + impulsive + duration)*

L_r = 60 + 5 + 5 - 10

= 60 \text{ dB}(A)

Traffic Noise

(fluctuating noise)*

L_r = 45 + 0

= 45 \text{ dB}(A)

*Refer to Table L_r-I
```

The Noise Criterion

The basic noise criteria for the urban residential zone is ideally 40 dB(A). Now look to Table L_r -II for the correction as to time of day; and to Table L_r -III for the zoning correction.

Noise Criterion = 40 - 5 + 10 = 45 dB(A)

Community Response

The projected response of the community to the evaluated noise sources is determined by the amount that the L_r exceeds the Noise Criterion (Table L_r -IV). Thus, for the transformer noise which is 5 dB(A) greater than the criteria there might be "sporadic complaints". The industrial noise will probably elicit the most reaction with "threats of community action" due to the excess of 15 dB(A) over the criteria. Whereas the traffic noise is merely part of the background noise.

EQUIPMENT

For Steady State Sounds

Sound Level Meter (IEC Standard)

For Fluctuating Sounds

Special monitoring equipment capable of integrating sound levels for long periods of time (usually 1 hour or 1 day)

REFERENCES

"我们的是否如此都是我们的你们的?" 的复数 计可可加的 计可可可可可计 计可计算机 化化合金

 International Organization of Standardization. Draft ISO Recommendation No. 1996 -Noise Assessment with Respect to Community Response (Document ISO/TC 43 (Secretariat -452) 529 E).

TITLE	NOISE RATING CURVES (NR)
UNIT	(None) [dB like scale]
DEFINITION	The Noise Rating Curves are sets of octave band levels (as shown in Figure NR-1, Table NR-I) which were established to provide ratings for octave band levels of community noise.
STANDARDS	International Organization of Standardi- zation. Draft ISO Recommendation No. 1996 - Noise Assessment with Respect to Community Response (Document ISO/TC 43 (Secretariat - 452) 529 E).
GEOGRAPHICAL USAGE	United Kingdom
PURPOSE	NR curves are used in conjunction with a Noise Criterion as specified in ISO 1996. Together they provide a means of assessing the impact of noise on a community.

BACKGROUND

Noise Rating Curves (NR) are used in conjunction with a Noise Criterion in an effort to improve predictions of community response to an intruding sound. For this method the noise from the sound source is measured in octave bands and the spectrum is compared to the noise rating curves.

It may be advisable to determine the Equivalent Sound Level (L_{eq} see p.100) for sounds with time-varying characteristics. A correction term is added to the octave band levels to account for impulse noise, tonal content and duration of the noise (Table NR-II).

Rating Sound Level (L_r) differs from the Noise Rating Curves only in the initial measurement of an intruding sound. L_r measures the noise in A-weighted sound pressure level instead of octave band frequency analysis (NR).

A Noise Criterion is used with NR as a means of describing projected community response. The basic noise criteria itself is related to the pre-existing background level which should be established according to the living habits of the people of the community in question. It has been suggested for residential areas

Octave bund pressure level L dB re. 2, 10^{-5} N/m²

FIGURE NR-1. NOISE RATING CURVES

TABLE NR-I				
OCTAVE BAND PRESSURE LEVELS				
CORRESPONDING TO NOISE RATING NUMBER NE	R			

	C	Octave band	f sound pro	ssure leve	1 (UU) (or (cent re-fru	quencica (i	(z) ·	
NR	31, 5	63	125	250	500	1000	2000	4000	8000
0	55, 4	35.5	22.0	12,0	4.8	0	- 3, 5	- 6, 1	- 8.
5	58.8	39.4	26.3	16,6	9.7	5	+1.0	- I. U	- 2.
10	62.2	43.4	30.7	21.3	14.5	10	6,6	+4.2	12.
15	65.6	47.3	35,0	25.9	19.4	15	11.7	9,3	7.
20	69,0	\$1.3	39,4	30,6	24.3	20	15.8	14.4	12.)
25	72.4	55, 2	43.7	35.7	29.2	25	21.9	19, 5	17,
30	75,8	59,2	46, 1	39.9	34.0	30	26.9	24,7	22.1
35	79.2	63.1	52,4	44.5	3.9.9	3.5	32.0	29,8	28,0
40	82,6	67.1	56,8	49.2	43,8	40	37.1	34,9	33. :
45	86.0	71.0	61.1	53,0	49.6	45	42. 2	40.0	38.
50	89.4	75.0	65.5	58,5	53, 5	50	47.2	45,2	43.5
55	92.9	78.9	69,8	63,1	58.4	55	52.0	50,3	4H.6
69	96.3	82,4	74.2	67.8	63.2	60	57,4	55.4	53.8
65 ·	99.7	86.8	78, 5	72, 4	68,1	65	62.5	60.5	58.4
70	101.1	90.8	82.9	77.1	73.0	70	67.5	65,7	64. I
75	106, 5	94,7	87,2	81.7	77.9	75	72,6	70. H	69, 2
40	109, 9	VH, 7	91.6	86.4	82.7	50	77.7	75.9	74.4
85	[111'3]	102.6	95, 9	91.0	87.6	85	82.8	81.0	79, 5
90	116.7	106.6	100.3	95, 7	92.5	90	87.8	86.2	84.7
95	120.1	110.5	104,6	100. 3	97.3	95	92, 9	E.10	89.8
100	123.5	114.5	107.0	105.0	102.2	100	98.0	96.4	45.0
105	126,9	118.4	113.3	109.6	107,1	105	103.1	101, 5	100.1
110	130.3	122.4	117.7	114.3	111.9	110	108.1	10h, 7	105, 3
115	133.7	126.3	122.0	118.9	116.8	Ľ15	113.2 [111.8	110.4
120	137.1	130,3	126.4	123.6	121.7	120	118.3	116.9	115.0
125	140, 5	134.2	130,7	128.2	126.6.	125	123.4	122,0	120.7
100	143.9	138.2	135,1	132,9	131.4	130	128.4	127.2	125, 9

TABLE NR-II

CORRECTIONS TO THE MEASURED SOUND LEVEL IN OCTAVE BANDS

Charactor	Correction dB(A)	
Peak factor	Impulsive noise (c.g. from hammering)	+ 5
Spectrum character	Audible tone components (c.g. whine) present	+ 5
Duration of the noise with sound level as a percentage of the relevant time period	Between: 100 and 56 56 and 18 18 and 6 6 and 1.8 1.8 and 0.6 0.6 and 0.2 Less than 0.2	$ \begin{array}{c} 0 \\ -5 \\ -10 \\ -15 \\ -20 \\ -25 \\ -30 \\ \end{array} $

that a suitable background criterion is in the 30~40 dB(A) range. Correction terms for time of day (Table NR-III and for different zoning specifications (Vable NR-IV) are applied to the basic noise criteria.

The community reaction to a noise source is approximated by the amount that the Noise Rating exceeds the Noise Criterion.

CALCULATION METHOD

in the state of the state of the second

. . . .

NR

The Noise Rating, NR, for most types of sounds can be determined for corrected octave band levels using Figure NR-1. The formulas for correcting the octave band levels are as follows:

- a) Noises of Constant Level
 Corrected octave band levels =
 Octave band level + correction*
- b) Noise of Fluctuating Level Corrected octave band levels = L_{eq} for octave band level + correction*

*Refer to Table NR-II

TABLE NR-III CORRECTIONS TO BASIC CRITERION FOR DIFFERENT TIMES OF DAY

Time of day	Correction to basic criterion
Day time	0
Evening Night time	- 5 - 10 to - 15

TABLE NR-IV

CORRECTIONS TO BASIC CRITERION FOR RESIDENTIAL PREMISES IN DIFFERENT ZONES

•

-

と手もないたんというです

ť

ž

٠

Type of district	Correction to basic criterion	
Rural residential, zonos of hospitals, recreation	0	
Suburban residential, little road traffic	+ 5	
Urban residențial	+ 10	
Residential urban with some workshops or with husiness or with main roads	+ 15	
City (business, trado, administration)	+ 20	
Prodominantly industrial area (heavy industry)	+ 25	

Noise Criteria Procedure

After choosing the basic Noise Criterion according to the zoning definition for a specified community (i.e., 30-40 dB(A) for a residential area), the corrections for time of day and type of district (Table NR-III and IV respectively) are applied.

Community Response

Community response to the intruding noise is then categorically estimated in Table NR-V by the amount that the Noise Rating exceeds the Noise Criterion.

EXAMPLE Evaluating NR

The Noise Rating (NR) and the Noise Criterion are used together to assess estimated community reaction during the evening hours for the following model urban residential district with the industrial sound as the intruding noise source.

The industrial noise includes both impulsive and audible tone components, and occurs about 10% of the time. The corrections for these parameters are in Table NR-II. The total correction to be applied to *each* octave band is as follows: Total Correction = tone + impulsive + duration

$$= 5 + 5 - 10$$

= 0

The corrected octave bands are in Table NR-VI and plotted on Figure NR-2. The highest NR value is 55 which occurs in the 2000 Hz octave band.

NR = 55

The Noise Criterion

The basic noise criteria for the urban residential zone is ideally 35 dB(A). Now look to Table NR-III for the correction as to time of day; and to Table NR-IV for the zoning correction.

Noise Criterion = 35 - 5 + 10

= 40 dB(A)

The Community Response

The projected response of the community to the evaluated industrial noise source is determined by the amount that NR exceeds the Noise Criterion (Table NR-V). In this case the industrial noise will probably elicit the response of "threats of community action" due to the excess of 15 dB(A) over the criterion.

FIGURE NR-2. EXAMPLE OF INDUSTRIAL NOISE SPECTRUM PLOTTED ON NOISE RATING CURVES

TABLE NR-V

ESTIMATED COMMUNITY RESPONSE TO NOISE

200

2011年の「2011年1月1日日本日本部署の部署の日本部署の日本部署の日本の日本には本部には大学の日本であった。」また大学の日本部であるであった。1911年1

i.

Amount by which the NR exceeds the noise	Estimated community response		
criterion	Category	Description	
0	None	No observed reaction	
5	Little	Sporadic complaints	
10	Medium	Widespread complaints	
15	Strong	Threats of community action	
20	Very strong	Vigorous community action	

'283

Octave Frequency Bands Hz	Factory Noise dB	Total Correction	Corrected Octave Bands dB
31.5	60.0	0	60.0
60.5	63.0	11	63.0
125	68.0	n	68.0
250	61.0	n	61.0
500	55.0	0	55.0
1000	51.0	n	51.0
2000	52.0	19	52.0
4000	45.0	n	45.0
8000	40.0	11	40.0

:

TABLE NR-VI EXAMPLE OF CALCULATIONS FOR CORRECTED OCTAVE BANDS*

*Plotted on Figure NR-2

EQUIPMENT

For Steady State Sounds

- 1) Sound Level Meter (IEC Standard)
- 2) Octave band analyzer (IEC Standard 225)

For Fluctuating Sounds

- Special monitoring equipment capable of integrating sound levels for long periods of time (usually 1 hour or 1 day)
- 2) Octave band analyzer (IEC Standard 225)

REFERENCES

化基督查基督教的 机拉克加拉拉维拉拉拉拉拉拉拉利斯利利斯的 化分析的 化分析的 化分子 计分子 计分子 化分子

 International Organization of Standardization. Draft ISO Recommendation
 No. 1996 - Noise Assessment with Respect to Community Response (Document ISO/TC 43 (Secretariat - 452) 529 E).

TITLE NOISE AND NUMBER INDEX (NNI) UNIT (dB like scale) DEFINITION NNI is a composite measure which uses average (i.e., on an *energy* basis) Perceived Noise Level in combination with the number of aircraft heard within a specified period. STANDARDS (None) GEOGRAPHICAL USAGE United Kingdom NNI is used to determine the relative PURPOSE noise impact of aircraft on the surrounding community.

BACKGROUND

NNI was derived from an extensive interview and physical measurement program within the area of London's Heathrow Airport. Aircraft flyover noise was measured at 85 locations within 10 miles of the airport and approximately 2000 people living in the same area were interviewed concerning their general satisfaction or dissatisfaction with their living environment.

The outcome of this study revealed 14 variables related to the noise environment and 58 socio-psychological variables. These were then intercorrelated and found to be reducible to two parameters: 1) the average (i.e., on an *energy* basis) maximum Perceived Noise Level, and 2) the number of aircraft heard during the day or night.

The term 15 log N in the formula for calculating NNI was derived from the estimate that doubling the number of events was equivalent to raising the noise levels by 4.5 dB. The constant of 80 was subtracted from the total noise exposure figures on the basis that the derived annoyance scale was zero at about 80 PNdB.

A survey of NNI levels shows that a level of 50 to 60 NNI is unreasonable during daytime and an NNI of 30 to 45 is intolerable during the nighttime.

CALCULATION METHOD

NNI is determined by the following formula:

$$NNI = \overline{PNL}_{max} + 15 \log N - 80 \qquad [1]$$

where:

N is the number of aircraft heard in the specified time period, i.e., l day or 1 night

$$\overline{PNL}_{\max} = 10 \log \begin{bmatrix} n \\ E \text{ antilog } (PNL_{\max_i} / 10) / N \\ i=1 \end{bmatrix} [2]$$

where:

PNL is the peak noise level in PNdB occurring during the passage of each aircraft

EXAMPLE

NNI is calculated for three aircraft flyovers.

Given:

$$\mathbf{FNL}_{\max} = 10 \, \log \left[\frac{\text{antilog } \frac{99}{10} + \text{antilog } \frac{105}{10} + \text{antilog } \frac{107}{10}}{3} \right]$$
$$= 10 \, \log \left[\frac{(0.794 + 3.162 + 5.012)}{3} \times 10^{10} \right]$$

= 104.8 PNdB

Then:

NNI = 104.8 + 15 log 30 - 80 = 104.8 + 22.2 - 80

- 47

ŧ

EQUIPMENT

- Tape recorder (necessary for single sample)
 - 2) Sound Level Meter (IEC Standard)
- 3) Octave or one-third octave band analyzer

REFERENCES

11

- Galloway, William J., Dwight Bishop, "Noise Exposure Forecasts: Evolution, Evaluation, Extensions and Land Use Interpretations", DOT-FAA Office of Noise Abatement, BBN Report No. 1862, (August 1970).
 - "Noise", Final Report of the Committee on the Problem of Noise, Cmdn. 2056, H. M. Stationary Office, London, (1963).

TITLE	TRAFFIC NOISE INDEX (TNI)
UNIT	(None)
DEFINITION	Traffic Noise Index (TNI) is a noise rating which takes into account the amount of level variability in A-weighted sound pressure level.
STANDARDS	(None)
GEOGRAPHICAL USAGE	United Kingdom
PURPOSE	TNI is used predominantly in evaluating the impact of traffic noise on the community.

290

.

_____.CM

BACKGROUND

The Traffic Noise Index was developed to take into consideration the variability of noise levels in an effort to improve the correlation between the noise level measurements and subjective questionnaire data. TNI rates noise measured outdoors in A-weighted sound pressure level. It is based upon the cumulative distribution of noise levels measured over a specified period of time. Two sound levels, L10 and L₉₀, are determined from the cumulative function. These represent the levels which were exceeded 10% and 90% of the time. Thus, the 10% level is an average "peak" level while the 90% level is an average "background" level.

CALCULATION METHOD

The TNI is a weighted comparison of L_{10} and L_{90} and is defined as:

 $TNI = 4 (L_{10} - L_{90}) + L_{90} - 30$ [1]

The first term expresses the range of the noise environment (i.e., sound levels exceeded 10 and 90 per cent of the time) and describes the "variability" of the noise. The second term represents the background noise level; the third term is a constant used in an effort to yield more convenient numbers.

EXAMPLE

An example for TNI calculation is:

Given:

 $L_{10} = 80$ $L_{90} = 70$

Then:

TNI = 4 (80 - 70) + 70 - 30

≈ 80

EQUIPMENT

Tape recorder (necessary for single events)
 Sound level meter (IEC Standard)
 Distribution analyzer
 Digital computer optional

REFERENCES

1. Griffiths, I. D., and F. J. Langdon, "Subjective Response to Road Traffic Noise", J. Sound and Vibration <u>8</u> (1): 16~32 (1968).

 "Noise", Final Report of the Committee on the Problem of Noise, Cmdn. 2056, H. M. Stationary Office, London, (1963).

NOTES

· ·

APPENDIX I

ADDITIONAL RATINGS

295

1

.

And an inclusion

ı.

Preceding page blank

.

UNIT dB DEFINITION The Annoyance Noise Level is a singlenumber rating of the annoyance of a noise signal calculated from acoustic measurements

ANNOYANCE NOISE LEVEL

in one-third octave bands.

STANDARDS No direct standard.

Related standard: Air-Conditioning and Refrigeration Institute, ARI 275-69

(ANL)

.

GEOGRAPHICAL USAGE United States

PURPOSE ANL was developed in the hope of improving upon the existing measures such as Loudness Level and Perceived Noise Level in the prediction of the annoyance of sounds.

> PAGES 296 AND 297 ARE BLANK (

298

>>>>

TITLE

BACKGROUND

ANL was developed by Wells (1969) in an effort to improve the perceived noise level (PNL) rating scheme especially for sounds containing pure tones. ANL uses equal "annoyance" curves which are similar to the curves used in calculating PNL. The calculation procedure is basically that used in PNL or Loudness Level except that a correction is made for the bandwidth of noise. ANL results for most sounds are approximately equal in magnitude to those obtained with PNL or Loudness Level.

CALCULATION METHOD

ANL methodology is very similar to that of PNL (see p. 76). First the Rating Indices are determined for the one-third octave band levels of a given spectrum using the following formula and the method provided in Table ANL-I.

Rating Index (RI) = $\operatorname{antilog}_{10} \operatorname{m} (L-L_0)$ [1]

where:

L is the one-third octave band sound pressure level for each frequency of a given noise spectrum; and m and L_0 are given in Table ANL-I.

(Because the methods for determining the tone correction and combining the rating indices are currently under revision they are <u>omitted</u> at this time.)

299

TABLE ANL-I

COEFFICIENTS m AND L FOR COMPUTATION OF RATING INDICES

٢,

Band Center	Lower Segment			Upp	Upper Segment		
Frequency	L <tab.< td=""><td></td><td></td><td>L ≥ tab.</td><td></td><td></td></tab.<>			L ≥ tab.			
(Hertz)	values		La	values		Lo	
50	91	0.04348	64	91	0.03010	52	
63	85	0.04057	60	85	0.03010	50.8	
80	85	0.03683	56	85	0.03010	48.8	
100	79	0.03683	53	79	0.03010	47	
125	79	0.03534	51	79	0.03010	45.8	
160	75	0.03333	48	75	0.03010	44,8	
200	73	0.03333	46	73	0.03010	43	
250	74	0.03205	44	74	0.03010	41.8	
315	94	0.03068	42	94	0.03010	40.8	
Full Range of L							
400					0.03010	40	
500					0,03010	40	
630					0.03010	40	
800					0.03010	40	
1000					0.03010	39.8	
1250					0.03010	38.9	
1600					0.02996	37.6	
2000					0.02996	35.7	
2500					0.02996	32.9	
3150					0.02996	30.6	
4000					0.02996	29.1	
5000					0.02996	29.8	
6300					0.02996	31.6	
	Lower Segment			U	Upper Segment		
8000	47	0.04229	38	47	0.02996	33.8	
10000	50	0.04229	41	50	0.02996	36.8	
12500	61	0.04013	46	61	0.03010	40.6	

EXAMPLE (Omitted for reasons given in Calculation 4 Method). EQUIPMENT 1) Tape Recorder (necessary for single events) 2) Sound Level Meter (IEC Standard) 3) Octave or 1/3 octave band analyzer 4) Digital Computer (optional) REFERENCES 1. Wells, R. J., "A New Method for Computing the Annoyance of Steady State Noise Versus Perceived Noise Level and Other Subjective Measures", 77th meeting of the Acoustical Society of America, Phil., (April, 1969).

TITLE

E-LEVEL (EL) (L_F)

UNIT

dB(E) (dB) Reference pressure: 20 μN/m²

DEFINITION

E-weighted (Ear) sound pressure level or E-level is sound pressure level which has been frequency filtered to reduce the effect of the low frequency noise and

increase the effect of high frequency noise. An approximation of the "E" weighted response curve is shown in

Figure EL-1.

STANDARDS

(None)

GEOGRAPHICAL USAGE

PURPOSE

E-level is suggested as a simple approximation of perceived level (PL) (see page 60).

BACKGROUND

R

Sec. 2. Sec. 2.

E-level is similar to D-level in that it attenuates the lower frequencies in a manner approximating the behavior of the human ear. However, E-level was intended to relate to the loudness curve rather than the noy contour. Conceived by Stevens, the E-scale is approximately the inverse of the 20 some contour of the perceived level calculation method. At this time the E-weighting scale has not been standardized and is not available in any sound level meter.

CALCULATION METHOD E-level may be estimated by applying the E-weighting curve (Figure EL-1), to octave or one-third octave frequency band measures and summing the bands on the basis of their squared pressures (often referred to as summation on an energy basis). If octave or one-third octave measures are available, it is suggested that perceived level be calculated instead of E-level since E-level is only an approximation of PL.

EXAMPLE The exact E-level correction spectrum is not available at this time.

EQUIPMENT Equipment for determining octave or onethird octave band noise measurements.

.

N

•

304

.

NOTES

.

.

-

.
APPENDIX II

ţ,

P

4

į

5. COL.

n An tha an that a star a star

ABBREVIATIONS

.

ABBREVIATIONS

AI Articulation Index AL A-weighted sound pressure level (see L_n) ANL Annoyance Noise Level American National Standards Institute ANSI в Total Noise Load B-weighted sound pressure level (see L_{p}) BL C-weighted sound pressure level (see L_c) CL CNEL Community Noise Equivalent Level CNR Composite Noise Rating for Aircraft CNRC Composite Noise Rating for Community Noise đв Decibel. The decibel is one-tenth of the bel. D-weighted sound pressure level (see L_D) DL ECPNL Equivalent Continuous Perceived Noise Level (see WECPNL) E-weighted sound pressure level (see L_{p}) EL EPNL Effective Perceived Noise Level HL Hourly Level (see HNL) HNL Hourly Noise Level (see HL, L_H) IEC International Electrotechnical Commission ISO International Organization for Standardization Sound Pressure Level (see OASPL, SPL, Lp) L A-weighted sound pressure level (see AL) L B-weighted sound pressure level (see B-level) (BL) LB PAGES 306 AND 307 ARE BLANK 308 - (

۹.

LC	C-weighted sound pressure level (see CL)					
LD	D-weighted sound pressure level (see DL)					
Ldn	Day-Night Level					
L _E	E-weighted sound pressure level (see EL)					
L _{EPN}	Effective Perceived Noise Level (see EPNL)					
Leq	Equivalent Sound Level (SLAQ)					
L _H	Hourly Level (see HNL) ,					
LL	Loudness Level					
LLS	Loudness Level - Stevens					
LLZ	Loudness Level - Zwicker					
LNP	Noise Pollution Level (see NPL)					
Lp	Sound Pressure Level (see OASPL, SPL, L)					
L _{PN}	Perceived Noise Level (see PNL)					
Lr	Rating Sound Level					
N	Isopsophic Index					
NC	Noise Criterion Curves					
NCA	Noise Criteria A-curves (see NC)					
NEF	Noise Exposure Forecast					
NT	Noisiness Index					
NL	N-weighted sound pressure level (see D-level)					
NNI	Noise and Number Index					
NPL	Noise Pollution Level					
NR	Noise Rating Curves					
OASPL	Overall Sound Pressure Level					
PL	Perceived Level according to Stevens Mark VII, PLdB					

t

PNC	Preferred Noise Criteria Curves
PNL	Perceived Noise Level (see L _{pn})
PNLT	Tone Corrected Perceived Noise Level (PNL + T)
PNLTmax	Maximum Tone Corrected Perceived Level
PSIL	Preferred Speech Interference Level (see SIL)
ō	Mean Annoyance Level
R	Classification Index (see N)
RMS	Root-Mean-Square
SEL	Sound Exposure Level (see SENEL)
SENEL	Single Event Noise Exposure Level
SIL	Speech Interference Level
SLAQ	Equivalent sound level A-weighted (see L _{eq})
SLM	Sound Level Meter
SPL	Sound Pressure Level
TNEL	Total Noise Exposure Level (see WECPNL)
TNI	Traffic Noise Index
WECPNL	Weighted Equivalent Continuous Perceived Noise Level

APPENDIX III

ŗ

GLOSSARY

313

PAGES 311 AND 312 ARE BLANK

GLOSSARY

ACOUSTICS -- Acoustics is the science of sound, including its production, its transmission and any effect that it may cause.

AMBIENT NOISE -- Ambient noise is the all-encompassing noise as associated with a given environment, usually comprising sounds from many sources near and far.

ANSI -- American National Standards Institute.

BACKGROUND NOISE -- The total of all noise in a system or situation, independent of the presence of the desired signal.

- BAND CENTER FREQUENCY -- The designated (geometric) mean frequency of a band of noise or other signal. For example, 1000 Hz is the band center frequency for the octave band that extends from 707 Hz to 1414 Hz, or for the third-octave band that extends from 891 Hz to 1123 Hz.
- BAND PRESSURE (OR POWER) LEVEL -- The pressure (or power) level for the sound contained within a specified frequency band. The band may be specified either by its lower and upper cutoff frequencies, or by its geometric center frequency. The width of the band is often indicated by a modifier (e.g., octave band, third-octave band, 10 Hz band).

CYCLES PER SECOND -- See Frequency.

Ť

. -

1124

- DAMAGE-RISK CRITERION (HEARING-CONSERVATION CRITERION) --Recommended maximum noise levels not to be exceeded for a given exposure time in order to minimize the risk of hearing damage to persons exposed to the noise.
- DECIBEL -- The decibel (abbreviated "dB") is a measure, on a logarithmic scale, of the magnitude of a particular quantity (such as sound pressure, sound power, intensity, etc.) with respect to a standardized reference quantity.
- ENERGY BASIS -- This is familiar terminology that is used when referring to the procedure of summing or averaging sound pressure levels on the basis of their aquared pressures. This method involves the conversion of decibels to pressures, then performing the necessary arithmetic calculations, and finally changing the pressures back to decibels. This procedure is also referred to as energy summation, average energy, or energy averaging.
- EQUIVALENT LEVEL -- Equivalent level is averaged sound pressure level over the total integration time.
- EXPOSURE LEVEL -- Exposure level is the summation of sound pressure level over any length of time divided by a constant reference time (e.g., 1 sec., or 1 hour). This is differentiated from equivalent level which is averaged sound pressure level over the total integration time. See EQUIVALENT LEVEL.

FREQUENCY -- The number of oscillations per second (a) of a
periodic wave sound, and (b) of a vibrating solid object;
now expressed in Hertz (abbreviation Hz), formerly in cycles
per second (abbreviation cps).

HERT2 -- See FREQUENCY.

- IEC -- International Electrotechnical Commission. One of the international bodies that provides specification for use by manufacturers of noise measuring instruments.
- IMPULSE NOISE -- Impulse noise is noise of a transient nature due to a sudden impulse of pressure like that created by a gunshot, or a balloon bursting.
- ISO -- International Organization for Standardization. One of the international bodies that provides specifications for use by manufacturers of noise measuring instruments.
- LEVEL -- In acoustics, the level of a quantity is the logarithm of the ratio of that quantity to a reference quantity of the same kind. The base of the logarithm is commonly 10. The reference quantity and the kind of level must be specified. The unit is generally the decibel.
- LOUDNESS -- Loudness is the intensive attribute of an auditory sensation, in terms of which sounds may be ordered on a scale extending from *soft* to *loud*. Loudness depends primarily upon

316

.......

and and and

the sound pressure of the stimulus, but is also depends upon the frequency and wave form of the stimulus. The unit of loudness is the sone.

r.

÷

- MASKING -- 1) Masking is the process by which the threshold of audibility for one sound is raised by the presence of another (masking) sound. 2) Masking is the amount by which the threshold of audibility of a sound is raised by the presence of another sound. The unit customarily used is the dB.
- NOISE -- Noise is any undesired signal. In acoustics, noise is any undesired sound.
- NOY -- Noy is a unit used in the calculation of Perceived Noise Level. It is the noisiness of a noise for which the perceived noise level is 40 PNdB. The noisiness of a noise that is judged by a subject to be n times that of a 1-noy noise is n noys.
- OCTAVE BAND -- An octave band is a frequency band with lower and upper cut-off frequencies having a basic ratio of two. The cut-off frequencies of 707 Hz and 1414 Hz define an octave band in common use. See also BAND CENTER FREQUENCY.
- OCTAVE BAND SOUND PRESSURE LEVEL -- Octave band sound pressure level is sound pressure level of the noise contained in an octave band. See SOUND PRESSURE LEVEL.

PEAK SOUND PRESSURE -- The peak sound pressure for any specified time interval is the maximum absolute value of the instantaneous sound pressure in that interval.

PHON -- The unit of measurement for Loudness Level.

- PURE TONE -- A pure tone is a sound wave whose waveform is a simple sinusoidal function of the time. It is also described as a sound sensation characterized by its singleness of pitch.
- SONE -- Some is a unit to measure loudness. It is (1) equal to 40 phons, or (2) one some is equal to a 1000 Hz tone at 40 dB. The loudness of any sound that is judged by a listener to be n times that of a 1-some tone equals n somes.
- SONIC BOOM -- The sonic boom is the pressure transient produced at an observing point by a vehicle that is moving past (or over) it faster than the speed of sound.
- SOUND -- Sound is an oscillation in pressure, stress, particle velocity, etc., in an elastic medium, or the superposition (combination) of such oscillations. By extension, sound has also come to be associated with the auditory sensation evoked by this type of oscillation.
- SOUND LEVEL -- Sound level is a weighted sound pressure level obtained by use of a sound level meter having standard frequencyfilters (weightings of A, B, or C, ANSI S1.4-1971) for attenuating part of the sound spectrum.

۲

)

SOUND LEVEL METER -- A sound level meter is an instrument comprised of a microphone, an amplifier, an output meter, and frequency weighting network used for the measurement of noise and sound levels. Weighting networks usually include "A", "B" and "C" weightings.

1

-

Ċ.

7+

- SOUND PRESSURE LEVEL -- 1) The sound pressure level of a sound is 20 times the logarithm to the base 10 of the ratio of the measured root-mean-square (RMS) value of the sound pressure to a reference sound pressure. 2) The reference sound pressure for this Handbook is 20 μ N/m², but often seen is the reference pressure 20 Pascal (Pa).
- SPECTRUM -- The spectrum of a sound wave is a description of its resolution into components, each of different frequency and usually different amplitude and phase.
- SPECTRUM LEVEL -- The spectrum level of a specified signal at a particular frequency is the level of that part of the signal contained within a band 1 Hz wide centered at the particular frequency.
- STEADY-STATE SOUNDS -- These are sounds whose average characteristics remain constant in time. Possible examples of steadystate sounds are an aircraft ground run-up, a stationary car engine, and electric blender.
- THIRD-OCTAVE BAND -- A frequency band whose cut-off frequencies have a ratio of 2 1/3, which is approximately 1.26. The cutoff frequencies of 891 Hz and 1123 Hz define a third-octave band in common use (1000 Hz center frequency). Refer to BAND CENTER FREQUENCY.

)

1 :

THRESHOLD OF AUDIBILITY (THRESHOLD OF DETECTABILITY) -- The threshold of audibility for a specified signal is the minimum effective sound pressure level of the signal that is capable of evoking an auditory sensation in a specified fraction of the trials.

"HRESHOLD SHIFT -- Threshold shift is an increase in a hearing threshold level.

- TRANSDUCER -- A transducer is a device capable of being actuated by waves from one or more transmission systems or media and supplying related waves to one or more other transmission systems or media. Examples are microphones, accelerometers, and loudspeakers.
- TRANSIENT SOUNDS -- Transient sounds are those whose averave properties do not romain constant in time. Examples are an aircraft flyover, a passing train, and a sonic boom.
- **MAVELENGTH** -- Wavelength for a periodic wave (such as sound in air), is the perpendicular distance between analogous points on any two successive waves. The wavelength of sound in air or in water is inversely proportional to the frequency of the sound. Thus the lower the frequency, the longer the wavelength.
- WHITE NOISE -- White noise is noise that is uniform in power-perherts-bandwidth over a very wide frequency range (equal energy in every cycle). The slope of the pressure spectrum level of white noise is zero dB per octave.

320

ł

. Į. į ••••

APPENDIX IV

 \overline{U}

-3

٠,

~

i

100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

NOISE RATINGS COMPARISONS

323

Preceding page blank

•

(Les Part II for Load Use (Les Part II for Load Use (Description)	0.4 U.S.A.)/ Process (San Page 35 for Trait)	<u>с</u>	hand U.K.	B Päptfini, m.Sz	NF Seuth Atrice
	-120	di manua kunana kun	85	-60	70	- 80
-40	-115	A	80	-55 - 55	-60	-75
Vigenee Reesised Addie Construction Science Construction	–10 × 11		-75 -77 - 77 -	-50	53 50	-70
-35	- 105	- 90 JU	-70	-45	-45	
		-85 1)1 -0	-65 1 1	-35		
		-80		-30	-30	-60
-25	- 95 J22	2 2 - 7:-	-50 16 25 -50	25	-a	- 55
<u></u>			I	20	-20	

1

Reproduced from best available copy.

۲. **۲**

FIGURE A APPROXIMATE EQUIVALENCES BETWEEN NOISE EXPOSURE INDICES AND RESPONSE OF LAND USE DESCRIPTIONS

324

.

e

ï

r.

The second s

.

 \sim \sim

325

e e comme esta antica anna a guarda anna a sua anna a sua a sua a

FIGURE B COMPARISON OF VARIOUS NOISE EXPOSURE INDICES FOR A FLYOVER NOISE LEVEL OF 110 PNdB, EFFECTIVE DURATION OF 10 SECONDS, AND VARIABLE NUMBER OF OPERATIONS

and a second second

REFERENCES

1. Galloway, William J., D. E. Bishop, "Noise Exposure Forecasts" Evolution, Evaluation, Extensions and Land Use Interpretations", DOT-FAA Office of Noise Abatement, BBN Report No. 1862, August 1970.

)

1

U.S. GOVERNMENT, PRINTING OFFICE: 1974-739-159/107